
Genome-wide association (GWA) studies have been 
very successful for identifying disease loci using single- 
marker-based association tests that examine the rela-
tionships between each SNP marker and the trait of 
interest1. Despite the success of single-marker associa-
tion tests — given the hundreds of thousands of SNP 
markers used in most GWA studies — this strategy 
has limited power to identify disease genes, similar to 
finding needles in a haystack. Some genes may be gen-
uinely associated with disease status but may not reach 
a stringent genome-wide significance threshold in any 
GWA study. Realizing the limitations of conventional 
single-marker association analysis, alternative or com-
plementary approaches for GWA study analysis have  
been developed in recent years. These include asso-
ciation tests that use multiple SNP markers2–8,  
association tests using imputed genotypes9,10, asso-
ciation tests incorporating linkage information11 and, 
more recently, pathway-based association approaches12. 
The pathway-based approaches typically examine 
whether test statistics for a group of related genes 
have consistent yet moderate deviation from chance, 
similar to finding a string of interconnected needles 
in a haystack. It is well known that genes do not work 
in isolation; instead, complex molecular networks and 
cellular pathways are often involved in disease suscep-
tibility and disease progression13. Therefore, by taking 
into account prior biological knowledge about genes 
and pathways, we may have a better chance to identify 
the genes and mechanisms that are involved in disease 
pathogenesis.

Much of the work on pathway-based analysis of 
GWA study data was motivated by pathway association 
approaches for gene expression microarray analysis. It 
is well known that functionally related genes can have 
coordinated gene expression patterns, so examination of 
gene expression for a group of genes can identify path-
ways that have modest yet consistent changes in gene 
expression levels14. This Gene Set Enrichment Analysis 
(GSEA) method has been improved15,16 and, over the 
past decades, dozens of alternative approaches have 
been proposed that have different functionalities and 
power levels (reviewed and compared in Refs 17,18).

Borrowing ideas from the microarray field, similar 
approaches can be adopted in GWA study analysis, with 
some modifications to address the unique challenges 
of GWA study data. In pathway-based association tests 
for GWA studies, researchers typically examine a col-
lection of predefined gene sets for pathways based on 
prior biological knowledge, and the significance of each 
pathway can be summarized based on the disease asso-
ciation of markers in or near genes that are components 
of that pathway. Over a few years, various techniques 
have been proposed to summarize the significance of 
a biological pathway from a collection of SNPs and to 
adjust for multiple testing at the pathway level. Here, 
we review the application of pathway-based associa-
tion approaches, describe and classify currently avail-
able statistical methods, discuss the pitfalls and caveats 
in interpreting results from them, and propose future 
directions and extensions, especially with respect to 
next-generation sequencing data.
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Abstract | Genome-wide association (GWA) studies have typically focused on the 
analysis of single markers, which often lacks the power to uncover the relatively small 
effect sizes conferred by most genetic variants. Recently, pathway-based approaches 
have been developed, which use prior biological knowledge on gene function to 
facilitate more powerful analysis of GWA study data sets. These approaches typically 
examine whether a group of related genes in the same functional pathway are jointly 
associated with a trait of interest. Here we review the development of pathway-based 
approaches for GWA studies, discuss their practical use and caveats, and suggest that 
pathway-based approaches may also be useful for future GWA studies with 
sequencing data.

 G e n o m e - w i d e  a s s o c i at i o n  s t u d i e s

R E V I E W S

NATuRE REvIEWS | Genetics  vOluME 11 | DEcEMBER 2010 | 843

© 20  Macmillan Publishers Limited. All rights reserved10

mailto:hakonarson@email.chop.edu 


Nature Reviews | Genetics

IL-12 heterodimer: 
IL-12A (p = 0.04)
IL-12B (p = 8.8e-9)

IL-12RB2* 
(p = 2.8e-17)

JAK2 (p = 6.8e-7)

TYK2 (p = 5.7e-3)

STAT1 (p = 0.17)
STAT4 (p = 0.038)

STAT1 (p = 0.17)
STAT4 (p = 0.038)
TBX21 (p = 0.28)

CCR5

CXCR3

Phosphorylation

IL-18RAP
(p = 2.0e-5)

IL-18R1
(p = 1.2e-4)

IL-18 (p = 0.014)
IFN-

IL-23 heterodimer: 
IL-23A (p = 0.09)
IL-12B (p = 8.8e-9)

IL-23R
(p = 1.0e-35)

IL-12RB1
(p = 7.7e-4)

JAK2 (p = 6.8e-7)

STAT3 (p = 3.4e-5)

CCR6
(p = 1.8e-5)

IL-17 (p = 0.012)
IL-17F (p = 0.18)
IL-21 (p = 2.2e-4)
IL-22 (p = 0.17)
IL-26 (p = 0.024)
TNF- (p = 6.1e-3) 

TGF-
IL-6 (p = 0.17)

STAT3 (p = 3.4e-5)
ROR t (p = 0.024)
ROR (p = 4.7e-4)

IL-12RB1
(p = 7.7e-4)

P P

P

TH1 
commitment

TH17
suppression

Immunosuppression

TH1 T cell TH17 T cell

IL-27
(p = 0.005)

IL-10
(p = 0.016)

Cytokine-mediated gut destruction

TH17
differentiation

applying pathway-based association approaches 
As an example of how biological pathways are involved 
in disease pathogenesis, we discuss a manually com-
piled pathway centred on interleukin (Il)-12 and Il-23 

(Refs 19–22), which are important in crohn’s disease 
(fIG. 1). crohn’s disease is an inflammatory disease of 
the gastrointestinal tract with a strong genetic compo-
nent. We examined a previously published GWA study 
of crohn’s disease23, mapped all assayed SNPs to their 
closest genes and then annotated the most significant 
p-values for the genes shown in fIG. 1. Only three genes at 
two loci showed genome-wide significant signals in this 
GWA study, but three genes in the Il-12–Il-23 pathway 

were confirmed as susceptibility genes in replication 
studies23, and six genes in this pathway were reported as 
crohn’s disease susceptibility genes in other association 
and functional studies24–29 (see fIG. 1 for details). This 
example clearly demonstrates that multiple related genes 
in the same functional pathway may work together to 
confer disease susceptibility and that some genes may 
not reach genome-wide significance in any given GWA 
study owing to limited power. Additionally, as the most 
associated gene in a pathway might not be the best can-
didate for therapeutic intervention, targeting suscepti-
bility pathways might also have clinical implications for 
finding additional drug targets.

Figure 1 | Linking pathways to disease: crohn’s disease. As an example of how biological pathways are involved in 
disease pathogenesis, we illustrate a manually compiled pathway centred on interleukin (IL)-12 and IL-23 (Refs 19–22) 
that is important in Crohn’s disease. The IL-12 and IL-23 cytokines share one subunit, their cellular receptors  
also share one subunit and their intracellular signalling machineries share many components. For many years, the 
pro-inflammatory cytokine IL-12 was thought to be a major player in Crohn’s disease pathogenesis109, which is 
mediated by T cells that produce T helper 1 cytokines (T

H
1 cells). Recent genetic studies demonstrated a more 

important role for IL-23 (Ref. 110), which activates a subset of T cells characterized by the production of the cytokine 
IL-17 (T

H
17 cells)19. Only the main proteins in this pathway are shown. For each gene, the most significant p-value 

among SNPs closest to the gene (based on a large-scale meta-analysis of genome-wide association (GWA) studies on 
Crohn’s disease23) was annotated. Only three genes at two loci (IL12B on 5q33 and IL23R–IL12RB2 on 1p31) showed 
genome-wide significant signals in this GWA study (marked in bold font), but three genes (JAK2, C-C chemokine 
receptor 6 (CCR6) and signal transducer and activator of transcription 3 (STAT3)) in the IL-12–IL-23 pathway were 
confirmed as susceptibility genes in replication studies23, and six genes (STAT4, IL18, IL-18 receptor accessory protein 
(IL18RAP), tyrosine kinase 2 (TYK2), IL27 and IL10) in this pathway were reported as Crohn’s disease susceptibility 
genes in other association and functional studies24–29. *IL12RB2 is located adjacent to IL23R so the significant marker 
could be tagging causal variants that target IL23R.  CXCR3, C-X-C chemokine receptor 3; RORα, RAR-related orphan 
receptor A; TGF-β, transforming growth factor-β; TNF-α, tumour necrosis factor-α.
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Recognizing the importance of considering SNPs 
in the same pathway jointly, several pathway associa-
tion approaches have been developed and applied. For 
example, previous GWA studies demonstrated that 
complement factor H is a strong risk factor for age-
related macular degeneration (AMD)30–32. However, in 
a pathway-based association analysis, multiple addi-
tional complement factor genes were moderately asso-
ciated with AMD, which suggests that the complement 
pathway contributes to AMD pathogenesis33. Similar 
observations were made in other studies that exam-
ined the collective association of multiple complement 
factor pathway genes with AMD12,34. Two age-related 
neurological disorders, Parkinson’s disease and amyo-
trophic lateral sclerosis, have been associated with the 
axon guidance pathway, although no individual SNPs 
in genes in this pathway reach a genome-wide signifi-
cance level35,36. Several pathway-based studies have been 
conducted for neuropsychiatric disorders: for example, 
two studies implicated neuronal cell adhesion molecules 
in the aetiology of autism, schizophrenia and bipolar 
disorder37,38; and two studies on bipolar disorder impli-
cated pathways that mediate ion channel activity, syn-
aptic neurotransmission, and pathways that modulate 
transcription and cellular activity39,40. Furthermore, 
pathway-based association methods have been tested 
on a few autoimmune diseases, and inflammatory path-
ways that are well known in the pathogenesis of these 
diseases have been identified confidently41,42. Similarly, 
several groups at the Genetic Analysis Workshop 16 

(please see Further information for a link to the website) 
analysed the same GWA data set on rheumatoid arthri-
tis through various pathway-based approaches43–47 and 
identified pathways known to be related to this disease. 
Pathway-based analysis of the Wellcome Trust case 
control consortium (WTccc) data sets implicated 
multiple pathways in disease predisposition, many of 
which had long been assumed to contain polymorphic 
genes that lead to disease risk48. Studies published in 
2010 have also expanded the repertoire of diseases on 
which diverse pathway-based association approaches 
have been tested37,40,49–55.

collectively, these studies show that pathway-based 
approaches can provide complementary information to 
conventional single-marker analysis in GWA studies.  
Specifically, by identifying additional susceptibility 
genes, pathway analysis can be used to fill in part of 
the ‘missing heritability’. In addition, pathway analy-
sis may guide mechanistic studies, as they can help 
uncover the underlying disease pathways without 
the need to narrow down each GWA study locus to a  
single gene.

methods for pathway-based association
Over recent years, dozens of different methods have  
been published for pathway-based association  
analysis12,43,44,47,51,56–66 and some of the related issues have 
been discussed and reviewed67–72. These statistical meth-
ods can be broadly classified into two types, based on 
whether the required input data sets are a collection of 
SNP p-values or individual-level SNP genotypes (fIG. 2a). 
Additionally, the null hypothesis being tested in these 
pathway association approaches can be broadly classified 
as ‘self-contained’ versus ‘competitive’, based on whether 
comparisons were made between genes in a specific 
pathway and non-associated genes or other genes in 
the genome (fIG. 2b). Some of these published algo-
rithms are available as software implementations or web  
servers (TABLe 1).

Definition and source of pathways. The term ‘pathway’ 
as used in published GWA studies typically refers to a 
set of related genes, rather than a diagrammatic path-
way in which some genes are connected by arrows. Most  
pathway-based association approaches require the users 
to specify a predefined set of gene sets or pathways to test. 
The Pathguide resource provides many links to manually 
curated or computationally predicted pathways; some of 
the more commonly used pathway collections include 
Kyoto Encyclopedia of Genes and Genomes (KEGG)73, 
Biocarta and Gene Ontology74 (please see Further infor-
mation for links to these databases). Both KEGG and 
Biocarta contain manually curated pathways in different 
biological processes, whereas Gene Ontology contains 
mostly electronic annotations for human genes, based 
on various sources of evidence such as sequence homol-
ogy. The combined use of manually curated pathways 
and electronically compiled pathways may be employed 
in data analysis to ensure comprehensive coverage 
of pathways as well as high-quality information for  
well-studied pathways.

Figure 2 | types of pathway association method. A summary of the two main types 
of pathway association approaches. The approaches can be categorized based on the 
input data (a) or the null hypotheses that are tested (b).
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Permutation
A strategy for assessing  
the probability of observing the 
value of a particular statistic. 
The probability is computed 
from a data set in which the 
data are randomly shuffled  
and the statistic is recomputed 
from the shuffled data  
many times and ultimately 
compared to the value  
of the statistic obtained  
with the non-shuffled data.

Multi-marker test
A statistical method that 
measures the strength of 
association between a trait  
and multiple sNP markers.

Additionally, several databases also provide gene 
co-expression patterns or protein–protein interactions 
that can be explored in pathway analysis; for example, 
the Molecular Signatures Database (MSigDB) provides 
a list of gene sets that are defined by gene expression 
‘neighbourhoods’ near cancer genes15. Several commer-
cial providers, such as Ingenuity Pathway Analysis and 
GeneGo, also provide proprietary pathway databases, 
using multiple sources of information, including lit-
erature reviews as well as experimental evidence. More 
specialized pathway databases also exist to curate spe-
cific types of pathways; for example, the Science Signal 
Transduction Knowledge Environment and Nature 
Pathway Interaction Database are both manually curated 
databases for cell signalling, the Metacyc is a high-quality  
database for metabolic pathways, the TRANSPATH is 
a database for transcriptional regulation and there are 
several databases compiled from protein–protein inter-
action information75 (please see Further information 
for links to these databases). It should be noted that a 
fraction of human genes is uncharacterized and these 
genes are not mapped to manually curated or compu-
tationally predicted pathways, so their effects cannot be 
accounted for in pathway association analysis. In addi-
tion, some well-known pathways are not yet described in 
sufficient detail in public databases (for example, β-cell 
function and the Il-12–Il-23 pathway). For some spe-
cific disease areas, experts can compile more up-to-date 
pathways based on literature information or a prior bio-
logical hypothesis and these pathways can be tested in 
association analysis; for example, the complement factor 
pathway can be compiled and tested, given the known 
association of complement factor H with AMD. When 

neuropsychiatric diseases are studied, it may be impor-
tant to manually compile candidate pathways using 
expert knowledge, as public databases may not have 
well-annotated pathways for neuronal function.

Input data for pathway association tests. The first type 
of pathway association approach, the ‘p-value enrich-
ment approach’, aims to determine whether a specific 
group of p-values for SNPs (or genes) is enriched for 
association signals. A practical advantage of this type 
of approach is that it only requires a list of p-values as 
input, without the need for individual-level genotypes, 
which eliminates many practical challenges in coordi-
nated data analysis and data sharing. Many p-value-
based approaches use a p-value cut-off (typically p<0.05 
or p<0.001) for identifying a subset of significant SNPs 
in single-marker association tests for further pathway 
analysis. This means that the results are partly depend-
ent on the user-specified cut-off. There are also several 
potential biases such as gene size that must be considered 
when using these methods (discussed further below). 
Nevertheless, given their practical advantages, p-value 
enrichment approaches have gained popularity in the 
analysis of GWA study data sets.

The second type of pathway association approach, 
the ‘raw genotype approach’, uses individual-level SNP 
genotypes to derive gene-level and pathway-level test 
statistics and usually requires phenotype permutations to 
adjust for statistical significance of identified pathways. 
The raw genotype data may be used differently in the 
various methods: some methods require sophisticated 
multi-marker tests to derive gene-level test statistics that 
require raw genotypes for all SNPs in the gene; some 

Table 1 | Publicly available web servers or computer software for pathway analysis on genome-wide association study data sets

name input data Hypothesis 
tested

Analysis strategy URL Ref.

ALIGATOR SNP p-values Competitive Define significant SNPs by prespecified p-value cut-off, 
then count significant genes in each pathway

http://x004.psycm.
uwcm.ac.uk/~peter

40

i-GSEA4GWAS SNP p-values Competitive SNP label permutation, assign SNPs to genes, calculate 
modified Gene Set Enrichment Analysis (GSEA) 
enrichment score 

http://gsea4gwas.psych.
ac.cn

62

GenGen Raw genotype Competitive Assign the best test statistic among SNPs in or near a 
gene to represent the gene level signal, then calculate 
Kolmogorov–Smirnov-like enrichment score for a pathway

http://www.
openbioinformatics.org/
gengen

12

GESBAP SNP p-values Competitive Calculate enrichment score using ranked gene list, assign 
the best SNP p-value to a gene

http://bioinfo.cipf.es/
gesbap

111

GRASS Raw genotype Self-contained Regularized regression to select representative eigenSNPs 
for each gene, then assess their joint association with 
disease risk

http://linchen.fhcrc.org/
grass.html

49

GSA-SNP SNP p-values Competitive Use kth (k = 1, 2, 3, 4 or 5) best p-values in each gene to 
represent the gene

http://gsa.muldas.org 64

GSEA-SNP Raw genotypes Competitive Calculate enrichment score based on all SNPs in a given 
pathway without calculating gene-level test statistics

http://www.nr.no/
pages/samba/
area_emr_smbi_gseasnp

112

PLINK set-test Raw genotypes Self-contained Calculate the average of test statistics as the pathway 
enrichment scores, using independent and significant  
(by preselected p-value cut-off) SNPs in the pathway

http://pngu.mgh.
harvard.edu/~purcell/
plink

113

SNP ratio test Raw genotypes Competitive Calculate the number of significant SNPs in pathway 
divided by the number of  SNPs in pathway

http://sourceforge.net/
projects/snpratiotest

58
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SNP ascertainment
Identification of sNPs that 
should be placed on a 
genotyping array to  
ensure representative  
coverage of the genome.

Linkage disequilibrium
The non-random association  
of alleles at two or more 
closely linked loci.

Genomic inflation
The presence of excess 
false-positive results, 
measured by quantifying  
the ratio of the median  
of the empirically observed 
distribution of the test statistic 
to the expected median.

Type I error
The probability of a 
false-positive result from  
a statistical hypothesis test.

methods depend on single-marker p-values but require 
raw genotype data for phenotype permutation to adjust 
the significance of pathway enrichment scores. For 
example, we have developed a pathway-based associa-
tion approach12 by adopting the general framework of 
GSEA16 strategies, but accounting for linkage disequilibrium  
(lD) among SNP markers and for the different sizes of 
genes and pathways, using a two-step correction pro-
cedure. The ability to perform phenotype permutation 
maintains the correct lD patterns among neighbour-
ing SNPs — this is an important difference to p-value 
enrichment approaches, which may be influenced by 
differing lD patterns. However, it should be noted that 
it is not always possible to obtain raw genotype data eas-
ily and the permutation procedures are computationally 
intensive.

Although we broadly classify pathway-based asso-
ciation tests in two categories, the published methods 
also differ in many other aspects, including the source of 
precompiled pathway collections, the distance threshold 
to assign SNPs to nearby genes, how they summarize 
gene-level test statistics, how to calculate enrichment 
scores for each pathway and how statistical significance 
is assessed (BOX 1). As these differences are addressed 
in each published study when comparing the approach 
used with other approaches, we do not elaborate on them 
in greater detail in this review.

Null hypothesis being tested. Two types of null hypoth-
esis can be tested in pathway analysis of genotype data 
and are referred to as competitive and self-contained 

hypotheses76. competitive tests compare the statistics 
for genes in a given pathway with statistics for other 
genes to determine whether genes in a particular path-
way tend to be more associated with a given phenotype. 
Self-contained methods only consider results in a path-
way of interest and compare to the null (non-associated) 
genomic background. Because competitive methods 
require a comparison between many different pathways, 
these tests cannot be applied in a study that only assessed 
one or a few candidate pathways. By contrast, self- 
contained tests have the advantage that only genotypes 
from a collection of candidate genes are required, so this 
type of test can be used in many candidate gene asso-
ciation studies or in GWA studies that use gene-centric 
arrays (such as those specifically designed for cardiovas-
cular diseases77, metabolic traits or autoimmune condi-
tions). However, a disadvantage of self-contained tests 
is that the genomic inflation of test statistics is often not 
monitored or adequately adjusted for, which may result 
in inflated type I error. Given that most GWA studies are 
indeed susceptible to some degrees of genomic inflation, 
this is a practical concern. Further comparisons of these 
two forms of null hypotheses in the setting of gene expres-
sion analysis have been made76,78, and these comparisons 
may be relevant for GWA study analysis as well.

Other approaches using pathway information. Besides 
formal pathway-based association tests, investigators 
can also empirically identify susceptibility pathways 
based on a small group of SNPs that pass a genome-
wide significance threshold and then examine other 

 Box 1 | technical differences among pathway-based association methods

Mapping snPs to genes
Commonly used pathway-based association methods only examine genic SNPs (discarding all SNPs outside genes) or 
map SNPs to their closest genes in the genome within a certain distance threshold, such as 10 kb, 100 kb or 500 kb.  
Future studies may consider using recombination peaks at each locus to assign SNPs to one or several genes.

Pruning snPs
It is important to bear in mind that different SNP arrays may have used different sNP ascertainment schemes and that 
some genomic regions contain more correlated SNPs than other regions. Therefore, as the coverage of SNP arrays may 
be uneven, identifying independent SNPs may be necessary to reduce the biases caused by different SNP density and 
coverage. For example, researchers may prune a set of independent SNPs based on their r2 threshold before performing 
pathway-based association tests (see also BOX 2).

calculation of gene-based test statistics
Many methods depend on having a summary test statistic for each gene, based on their representative SNPs. Commonly 
used methods include the minP approach that assigns the minimum p-value from the SNPs in or close to a gene as the 
p-value for that gene and multi-marker tests that summarize the test statistic for a gene based on many contributing 
markers. Some methods pool all SNPs in a pathway together without calculating test statistics for specific genes.

calculation of pathway enrichment statistics
Commonly used methods include summary statistics that examine the shape of distributions of test statistics and 
hypergeometric tests that examine the categorical enrichment of test statistics.

Adjustment for gene size
Permutation approaches are typically used for adjustment of gene size, such that larger genes (or genes with more SNPs) 
are not more likely to generate lower p-values just by random chance.

Adjustment for pathway size
Depending on the enrichment score statistics used, the pathway size (number of genes in the pathway) may bias the 
resulting test statistics for the pathway. Most methods focus the analysis on pathways that pass specific size thresholds, 
such as those with at least 10 or 20 genes. Some methods resample pathways of a certain size many times and compute 
the distribution of observed enrichment scores to adjust for pathway size biases.
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genes in these pathways that did not reach genome-wide 
significance. This approach is somewhat ad hoc, but for 
well-powered studies with large sample sizes and multi-
ple genome-wide significant association signals, it can 
readily generate important biological insights based on 
bona fide association signals. For example, in a large-
scale GWA study on body mass index with over 32,000 
subjects in discovery cohorts and over 59,000 subjects 
in replication cohorts, multiple genome-wide significant 
SNPs tagged genes that are highly expressed or known 
to function in the central nervous system (cNS), impli-
cating the cNS in predisposition to obesity79. Similarly, 
in a GWA study on adult height, SNPs near 20 genes 
were implicated with p<5 × 10–7. Interestingly, the 
Hedgehog signalling, extracellular matrix and cancer 
pathways each contain several candidate genes, sug-
gesting that these pathways may be involved in human 
growth and developmental processes80. In a more recent 
GWA study on adult height, SNPs at 180 loci achieved 
genome-wide significance and these loci tended to be 
functionally connected with each other81. Several SNPs 
near genes in these pathways narrowly missed genome-
wide significance but a pathway analysis implicated 
multiple previously reported and novel pathways, which 
suggested that these pathways are likely to contain  
additional associated variants.

Hierarchical modelling is another form of pathway 
association analysis. This method takes a subset of mark-
ers from the first stage of a genome-wide association scan 
and carries them forward to subsequent stages for testing 
on an independent set of subjects82. Rather than simply 
selecting a subset of the most significant markers that 
reach an arbitrary p-value cut-off, a prior model is used 
that treats each marker differently. The prior model can 
be based on functions of various covariates that charac-
terize each marker, such as prior linkage, association or 
functional pathway data. Therefore, through hierarchi-
cal approaches, it is possible to infer whether specific 
pathways are associated with a phenotype of interest. In 
fact, hierarchical models using lASSO have been suc-
cessfully applied in simultaneous multivariate analyses 
of all GWA study SNPs83,84.

challenges and considerations
Although pathway-based approaches are becoming an 
invaluable tool to enable powerful association tests and 
help formulate new hypotheses on disease susceptibility, 
many challenges limit their practical use.

Major-effect genes versus moderate-effect pathways. 
complex diseases can have different genetic architectures 
that need to be taken into account in pathway analysis.  
Some complex diseases or traits are likely to result from 
the interplay of hundreds of genes in multiple pathways, 
and each pathway could contain several susceptibil-
ity genes that are moderately associated with disease. 
Pathway-based analyses are likely to be informative in 
such cases. However, for other traits, one strongly associ-
ated gene in a pathway can invalidate the null hypoth-
esis and show significance at the pathway level, but such 
pathways are likely to be of less interest to researchers 

because the pathway as a whole might not influence the 
trait. This issue will affect both competitive tests and 
self-contained tests, but approaches that use SNP test 
statistics to calculate enrichment scores will be more 
susceptible to these biases. In some analyses, removing 
known susceptibility genes from candidate pathways 
and reassessing association statistics may be helpful; for 
example, a study removed transcription factor 7-like 2 
(TCF7L2, a gene well known to be strongly associated 
with type 2 diabetes) from the Wnt signalling pathway 
and re-evaluated the association between the modified 
pathway with type 2 diabetes (the p-value dropped from 
0.0007 to 0.002)85. Also, when major histocompatibilty 
complex (MHc)-linked autoimmune diseases are stud-
ied, it may be important to adjust for influences from the 
MHc region given its extensive lD patterns, possibly by 
removing all MHc genes from the data set.

Biases introduced by permutation procedures. Most 
pathway association approaches use permutation pro-
cedures to calculate empirically adjusted p-values for 
given pathways. For p-value-based approaches, permu-
tation of SNPs is typically performed but, as discussed 
previously, this procedure disrupts lD patterns between 
SNPs and may not generate the correct null distribu-
tion. For raw genotype-based approaches, permutation 
of phenotypes (binary traits or quantitative traits) is typi-
cally performed but some biases can still be introduced. 
The reason for this is that, when phenotype permutation 
is performed, the ‘background’ distribution reflects the 
situation in which none of the SNPs or genes associate 
with the phenotype of interest; but in practice, for any 
trait, a proportion of SNPs will be genuinely associated 
with disease in unpermuted data sets. Furthermore, 
regardless of whether the SNPs or phenotypes are being 
permuted, the sampling units are assumed to be inde-
pendent and identically distributed, which may not be 
the case, as gene–gene interactions may play an impor-
tant part in disease susceptibility and study participants 
might be distantly related.

Adjustment of covariates. Many GWA studies use adjust-
ment of covariates in association tests, for example, 
adjusting for population stratification, age, sex or envi-
ronmental risk factors. These adjustments are typically 
necessary for refining genotype–phenotype relation-
ships, controlling for confounding factors and reducing 
genomic inflation. For p-value-based pathway asso-
ciation approaches, it is straightforward to directly use 
adjusted single-marker p-values in the analysis. However, 
for raw genotype-based approaches, it could present 
some challenges. Some pathway association approaches 
that use chi-squared test statistics cannot handle covari-
ates and, even if they can incorporate covariates by using 
a regression model to calculate test statistics, a strong 
assumption needs to be made about independence  
between pathways and specific covariates.

Testing for multiple non-independent pathways. Public 
pathway collections contain many pathways, includ-
ing overlapping pathways that share some genes, so 
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Bonferroni correction
A multiple comparison 
adjustment approach  
that tests each individual 
hypothesis by dropping  
the threshold for declaring 
statistical significance by 
n-fold, when n hypotheses  
are being tested.

False Discovery Rate
A multiple comparison 
adjustment approach to 
control the expected 
proportion of incorrectly 
rejected null hypotheses in  
a list of rejected hypotheses.

adjustment to correct for multiple testing needs to be 
considered. Some authors first perform a pairwise com-
parison between all pathways and then select a smaller 
subset of the most representative pathways for subse-
quent association analysis. For pathway collections 
with hierarchical structures (such as Gene Ontology), 
some authors restrict the analysis to a specific level of 
the hierarchy, such that pathways below this level are 
incorporated with their parental pathways in this level. 
Nevertheless, owing to the non-independent nature of 
many pathways, stringent Bonferroni corrections of p-values  
for each pathway will be over-conservative; false 
Discovery Rate (FDR)-based approaches may be more 
attractive to summarize the significance of associated 
pathways.

Discordant results from different approaches. In several 
cases, different results have been obtained when differ-
ent pathway-based methods were used to analyse data 
on the same diseases, and sometimes even when the 
same GWA study data sets were analysed. For example, 
the bipolar disorder data set from WTccc was analysed 
by four groups using different methods and they found 
different significant pathways39,40,48,51 (TABLe 2). This could 
be due to several reasons, including the use of different 
pathway collections and the different properties of statis-
tical tests on a disease architecture with no major-effect 
genes. By contrast, the crohn’s disease data set has also 
been tested by a few different methods and the inter-
leukin- or immune-related pathways were consistently 
detected as significant, although the top pathways do not 
match exactly40,41,48,51,55 (TABLe 2). These examples show 
that users should be cautious when drawing conclusions 
from only one pathway analysis.

The need to replicate pathway association findings. An 
issue that has not been stressed enough in many published 
pathway-based association studies is the need to repli-
cate association results. Similar to single-marker-based  
association tests, pathway-based association strategies 
may also be susceptible to false-positive results and 
thus should be appropriately replicated in independent 
data sets. Given the unique property of pathway-based 
association approaches, replication studies can be flex-
ibly conducted on GWA data from different genotyp-
ing platforms or on GWA studies from different ethnic 
groups (for example, Ref. 41). It is likely that the rank-
ing of individual genes or SNPs in a pathway may dif-
fer between studies but genes in genuinely associated 
pathways are expected to be consistently associated in 
replication studies.

The selection of pathway association approaches. There 
is no clear answer as to how the various pathway analy-
sis methods perform against each other under different 
scenarios of disease architecture and sample size, and 
in their relative susceptibility to biases such as gene or 
pathway size. Nevertheless, a few recent studies have 
compared different approaches and these results may be 
used as a reference for users. For example, in one study49, 
the authors demonstrated that their method performs 

favourably against competing approaches on simulation 
data sets, especially when the disease-associated vari-
ants tend to reside in large genes. In terms of selecting 
methods for pathway analysis, our general recommen-
dations are to consider the data sets available and the 
disease architecture to be tested. When individual-level 
genotype data is accessible, we suggest that it is prefer-
able to use the ‘raw genotype’ approaches because they 
are less susceptible to biases inherent in p-value-based 
approaches. For GWA studies on SNP panels with candi-
date genes, self-contained tests need to be used because 
some genes in any given pathway may not be interro-
gated in the study. Perhaps more importantly, given the 
distinct statistical models and analytical procedures for 
different approaches, it may be desirable to examine 
whether consistently associated pathways can be identi-
fied by more than one approach and then follow up the 
findings with an independent replication data set.

We caution users that pathway analysis for GWA 
studies is still not well developed and that results should 
be interpreted with care and scrutiny but we do not wish 
to discourage users. Indeed, the goal of pathway-based 
approaches is not to replace conventional single-marker 
analysis but to play a complementary part in identifying 
novel genes or sets of genes that confer disease suscepti-
bility. The results from pathway association approaches 
may also lead to the formulation of new hypotheses 
for additional statistical validations and functional 
validations.

Future directions and extensions
Pathway approaches for expression microarray data 
were first proposed almost a decade ago14,86 and yet 
novel and improved analytical methods are still being 
developed and reported87–93. As the concept of pathway 
analysis for GWA studies was proposed only recently12, 
we expect that many more improvements will be devel-
oped in the near future to help researchers better take 
advantage of the large amounts of available GWA study 
data. In BOX 2, we summarize some of the main areas 
for which we think improvements are needed. There 
are also several potential opportunities to extend path-
way analysis as genomic technologies develop, which 
we discuss below.

Integrative genomics that incorporates pathway infor-
mation. For genetic studies, multiple data types on the 
same set of samples can be collected and can provide 
a systems view of the biological processes underlying 
disease susceptibility or progression. In addition to SNP 
genotypes, these types of data include copy number 
variants, gene expression, epigenetic modifications and 
somatic mutations, among many others. Several stud-
ies have correlated whole-genome gene expression data 
sets with genotype data to perform integrative genomics 
analysis and these analyses have led to better understand-
ing of genetic association signals94,95. It is conceivable 
that most genome-wide data sets can be subjected to 
pathway-based analytical framework individually and it 
is also possible that one type of data can generate prior 
information to be tested by pathway approaches in other 
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data sets. However, the more integrated approach of 
using multiple data types together in the same pathway 
analysis may be more powerful to reveal novel biologi-
cal insights. How to best correlate whole-genome SNP 
genotype data with many other types of data through 
pathway-based approaches remains a crucial issue that 
needs to be explored further.

Extension to high-throughput sequencing data. As 
improvements in high-throughput sequencing tech-
niques enable sequencing data to be produced at 
ever-more rapid rates, it will become feasible to per-
form sequencing-based GWA studies (which here we 
term Seq-GWA studies) in large-scale genetic studies. 
Although it may seem straightforward to use genotypes 

Table 2 | top three pathways for crohn’s disease and bipolar disorder in wtccc data sets

Pathway p-value statistical test Ref.

Crohn’s disease

Antigen processing and presentation of peptide or polysaccharide 
antigen through MHC class II

<0.0001 40

MHC class II receptor activity <0.0001

MHC class II protein complex <0.0001

IL-12- and STAT4-dependent signalling pathway 0.00008 41

T cell receptor signalling pathway (in BioCarta) 0.0003

T cell receptor signalling pathway (in KEGG) 0.0007

Signal transduction — calcium signalling 0.008 48

Transcription —  ChREBP regulation pathway 0.01

Immune response — IL-3 activation and signalling pathway 0.02

ABC transporters — general 0.0004323 Fisher’s exact* 51

Extracellular matrix–receptor interaction 0.00051323

Lck and Fyn tyrosine kinases in initiation of T cell receptor  
activation pathway

0.00039108

Cytokine–cytokine receptor interaction 7.8144e–14 Simes/FDR* 51

Neuroactive ligand–receptor interaction 2.078e–05

JAK–STAT signalling pathway 4.1916e–14

IL-9 signalling N.A. 55‡

IL-2 receptor β-chain in T cell activation N.A. 

Bipolar disorder

Ion channel activity 1.27e–05 39

Calcium ion binding 6.58e–05

Potassium channel activity 0.00122

Hormone activity <0.0001 40

Transcription factor activity <0.0001

Macroautophagy <0.0001

Heparan sulphate and heparin metabolism 0.01 48

Cytoskeleton remodelling — α-1A adrenergic receptor-dependent 
inhibition of PI3K

0.01

Niacin–HDL metabolism 0.03

Inositol metabolism <1e–20 Fisher’s exact* 51

HOP pathway in cardiac development pathway 0.00229732

Glycan structures — biosynthesis 1 0.000266725

Chondroitin sulphate biosynthesis <1e–20 Simes and FDR* 51

Glycan structures — biosynthesis 1 <1e–20

MAPK signalling pathway 5.02134e–05

*Reference 51 explored different statistical tests, so the testing approach is annotated for each set of results. ‡Reference 55  
listed two significant pathways in common to multiple data sets, but p-values were not given. ChREBP, carbohydrate response 
element-binding protein; FDR, False Discovery Rate; HDL, high-density lipoprotein; HOP, homeodomain only protein;  
IL, interleukin; KEGG, Kyoto Encyclopedia of Genes and  Genomes; MHC, major histocompatibility complex; STAT, signal transducer 
and activator of transcription; WTCCC, Wellcome Trust Case Control Consortium. 
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Genotype imputation
A statistical method that 
predicts individual genotypes 
at ungenotyped markers from 
genotypes of other nearby 
markers, usually using the 
HapMap data as a reference.

called from sequencing data in the same framework as 
SNP-based GWA studies, there are specific challenges for  
sequencing data that need to be taken into account  
for pathway-based analysis. We briefly summarize 
some of these points below.

First, genotype calling for sequencing data, especially 
data with low-fold coverage, remains a major challenge. 
In the foreseeable future, sequence-based calls will be 
less accurate than genotype calls generated from SNP 
arrays. It is likely that probabilistic genotype calls, 

possibly facilitated by genotype imputation from sequenc-
ing data, will be used as units of analysis in pathway-
based association tests. Second, many more genetic 
variants will be identified from each gene. Therefore, the 
number of predictors may be far more than in current 
GWA studies and many of the methods will probably 
suffer from a lack of power with the dilution effects from 
too many null markers. Third, compared to SNP arrays 
used in typical GWA studies, many more rare genetic 
variants will be identified from Seq-GWA studies, but 

 Box 2 | improvements for pathway-based analysis methods

•	Better summary statistics need to be developed to assess the strength of association at the gene level or at the 
pathway level. Many published methods use the minimum p-value in a gene as the representative p-value for that 
gene in pathway association tests. Despite its convenience, this approach results in loss of information and may be 
susceptible to genotyping errors. Some recently published pathway association studies have demonstrated that 
joint association tests on multiple SNPs provide better power than methods that use a collection of p-values for 
individual SNPs49. Shrinkage techniques such as LASSO may be needed to address the issue of many independent 
variables in a regression model. Alternatively, machine-learning techniques that compute discrimination between 
two phenotype groups may be used to model complex genetic relationships better than association100.

•	Multi-marker association tests may be adopted for pathway-based association tests with specific modifications. 
These tests can be used to summarize gene-level p-values but it is also possible that these tests may be directly used 
for pathway-level association by appropriately adjusting for the correlation between adjacent markers and jointly 
considering the significance of all markers for all genes in a pathway. A potential drawback would be the increased 
degree of freedom because, for modest sample sizes, many more markers are included in the regression model. 
Additionally, multi-marker tests are typically computationally intensive so many of them may not be easily extended 
to the whole genome, especially for raw genotype-based approaches.

•	For SNP p-value enrichment approaches, it would be beneficial to develop methods that minimize biases caused  
by differential linkage disequilibrium (LD) patterns between different loci. Currently, some methods use SNP 
permutations that disrupt LD patterns; they assume that all SNPs are independent and this may lead to false-positive 
results. One simple correction procedure is to take a subset of relatively independent SNP markers from 
genome-wide association (GWA) studies for pathway-based association analysis. For example, in one study, the  
SNP with the most significant p-value in a genic region was selected and all SNPs within 1 Mb with r2 > 0.2 were 
removed40. These types of procedure are effective but they may also reduce gene coverage and result in loss of 
information. Therefore, it would be useful to develop more powerful methods to help reduce biases caused by 
different LD patterns between genes while maintaining sufficient power.

•	Imputation has been commonly adopted in most GWA studies to identify markers that were not directly genotyped 
but are associated with disease or to combine results from different genotyping platforms. The results from 
imputation, especially those based on the 1000 Genomes Project, may also help incorporate rare variants into 
association tests. However, imputation procedures raise challenges for the appropriate summarization of 
gene-based p-values and also cause vastly increased computational burdens for raw genotype approaches that 
require phenotype permutation. Novel approaches are needed to incorporate information from imputation to gain 
more comprehensive and less-biased coverage of genes, and to improve the power to identify associated pathways.

•	Complex diseases can involve multiple pathways and some pathways also share genes. Joint analysis of multiple 
related pathways could be a new research direction to develop more powerful association strategies. Conversely, 
some diseases (such as Crohn’s disease and ulcerative colitis) are known to share susceptibility genes so joint 
analysis of related GWA study data sets may help reveal shared susceptibility pathways in a more powerful manner. 
This would be particularly relevant for diseases for which genetic overlap is not well understood. For example, 
variants at JAZF1 and HNF1B confer susceptibility to both type 2 diabetes and prostate cancer101 and it is possible 
that these genes function in shared pathways relevant to both diseases102, even though multiple distinct pathways 
may be involved in each disease.

•	Several recent studies have focused on incorporating biological network structure into the analysis of GWA study 
data sets103–105. Compared to analysis of groups of distinct genes, networks provide more information on the 
relatedness and interconnectivity of genes. Network analysis may enable more powerful analysis when appropriate 
algorithms are implemented that account for the network topology, as well as gene–gene interactions. For example, 
Baurley et al.105 presented a pathway-modelling framework that discovers plausible pathways from observational 
data; biological knowledge can be readily applied a priori on pathway structure, and this framework allows 
estimation of the net effect of the pathway and the types of interactions occurring among genetic risk factors. 
Better characterization of gene–gene relationships and further development of approaches that incorporate 
network topology will result in more sensitive and powerful analysis. The development of Cytoscape106 (a software 
tool to visualize molecular interactions as a network diagram), as well as many plug-ins107,108, will facilitate 
network-based analysis for GWA studies.
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the single-marker-based analysis on each of the rare var-
iants will lead to severe loss of power owing to the low 
frequency of rare variants. Several methods for testing 
association by combining rare variants have already been 
developed96–99 and they may be useful for the pathway-
based analysis of future Seq-GWA studies. Finally, Seq-
GWA studies allow the direct interrogation of variants 
rather than just variants in strong lD with each other, 
so the ability to directly assay functional variants may 
allow more powerful analysis, but only if an approxi-
mately correct interpretation of functional weights can 
be applied to these variants. For exonic variants, it has 
been shown that by collapsing multiple rare variants, 
each with a different functional weight, the power of the 
association analysis can be improved97. It is likely that 
similar approaches can also be applied to whole-genome 
sequencing data but the assignment of functional scores 
may not be straightforward as most variants lie outside 

protein-coding regions. In summary, these would be 
important research directions for which empirical 
data should be gathered and theoretical development 
performed to lead towards more powerful pathway- 
based analysis of Seq-GWA studies in the future.

conclusions
Several recently published studies have clearly dem-
onstrated the use and importance of pathway-based 
approaches, which complement standard single-marker 
analysis in extracting more biological information from 
existing GWA study data sets. Despite many challenges, 
many opportunities also lie ahead. With the develop-
ment of high-throughput sequencing techniques, 
pathway-based approaches may also be useful in the 
analysis of sequencing data if appropriate functional 
interpretation methods are applied to unleash the true 
power of genetic association studies.
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