

Clinical genomics and metagenomics: when to go for one or the other and what to expect

John WA Rossen

Personalised Microbiology – Genomics for Infection Prevention

Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

ØSolidnessJPIAMR
Solidness.eu
info@solidness.eu

Applications of (meta)genomics in clinical microbiology

- Tracking outbreaks and identifying sources of recurrent infections
- Development of tailor-made molecular diagnostic screening tests
- Predicting resistance or virulence phenotypes from genome sequencing for optimal therapy
- Unbiased and culture free identification of pathogens

(Advanced)

- Understand host-pathogen and interactions
- Understand pathogen microbiome/virome interactions
- Drug/vaccine development

Genomics (WGS) vs Shotgun Metagenomics

Bacterial WGS

WGS to map VRE Outbreaks

Zhou X et al. J Antimicrob Chemother. 2018 Sep 14. doi: 10.1093/jac/dky349

SOLIDNESS - Surveillance Of mobiLome meDiated aNtibiotic rEsiStance Spread

The main goal of SOLIDNESS is to establish a network of excellence for surveillance of MGE- mediated antibiotic resistance and virulence spread

Natacha Couto, scientific coordinator

surveillance of mobile genetic elements?"

solidness.eu JPI-AMR 7th call project – supported by ZonMw

university of groningen

Adam Roberts Liverpool School of Tropical Medicine Spyros Pournaras University of Athens Greece Martin Sundqvist Örebro University Hospital Sweden Paulo Damasco Federal University of Rio de Janeiro Brazil João A. Carrico Universidade de Lisboa Portugal Annamari Heikinheimo University of Helsinki Finland Stefano Morabito Istituto Superiore di Sanità Italy Edward Feil University of Bath UK Jacob Moran-Gilad Ben-Gurion University of the Negev Israel Henrik Westh Hvidovre Hospital Denmark Hajo Grundmann University of Freiburg Germany Teresa Coque Ramón y Cajal University Hospital Spain Tjaša Cerar Kišek University of Ljubljana Slovenia Engeline van Duijkeren, RIVM, The Netherlands Adam P. Roberts, Liverpool School of Tropical Medicine, United Kingdom Holger Rhode, Universitätsklinikum Hamburg-Eppendorf, Germany Pieter-Jan Ceyssens, Sciensano, Belgium Joana Azeredo, University of Minho, Portugal

John Rossen, University of Groningen Netherlands – Lead partner

Stefan Schwarz Freie Universität Berlin Germany Silke Peter University of Tübingen Germany Alban Ramette University of Bern Switzerland

WGS in cases of unknown resistance mechanisms

Journal of Antimicrobial Chemotherapy Advance Access published January 27, 2015 Journal of Antimicrobial Chemotherapy

J Antimicrob Chemother doi:10.1093/jac/dkv002

OXY-2-15, a novel variant showing increased ceftazidime hydrolytic activity

R. H. T. Nijhuis^{1*}, S. Oueslati², K. Zhou³, R. W. Bosboom¹, J. W. A. Rossen³ and T. Nags²

¹Laboratory for Medical Microbiology and Immunology, Rijnstate, Velp, The Netherlands; ²Bactériologie-Virologie, AP-HP, LabEx LERMIT, Univ. Paris-Sud, Paris, France; ³Molecular Unit, Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

*Corresponding author. Tel: +31-88-0055455; E-mail: rht.nijhuis@outlook.com

Received 6 October 2014; returned 17 December 2014; revised 29 December 2014; accepted 31 December 2014

Objectives: Klebsiella oxytoca is a member of the family of Enterobacteriaceae and often contains the β -lactamase bla_{OXY} gene. Although this β -lactamase does not naturally hydrolyse ceftazidime, this study describes possible in vivo selection of a clinical K. oxytoca isolate showing increased MICs of ceftazidime.

RAPID COMMUNICATIONS

Isolation of an NDM-5-producing ST16 Klebsiella *pneumoniae* from a Dutch patient without travel history abroad, August 2015

E Bathoorn¹, JW Rossen¹, M Lokate¹, AW Friedrich¹, AM Hammerum²

1. Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands

2. Department of Microbiology and Infection Control, Statens Serum Institut, Copenhagen, Denmark

Correspondence: Erik Bathoorn (d.bathoorn@umcg.nl)

Citation style for this article

Bathoorn E, Rossen JW, Lokate M, Friedrich AW, Hammerum AM. Isolation of an NDM-5-producing ST16 Klebsiella pneumoniae from a Dutch patient without travel history abroad, August 2015. Euro Surveill. 2015;20(41):pii=30040. DOI: http://dx.doi.org/10.2807/1560-7917.ES.2015.20.41.30040

Article submitted on o2 October 2015 / accepted on 14 October 2015 / published on 15 October 2015

A New Delhi Metallo-beta-lactamase-5 (NDM-5)producing ST16 Klebsiella pneumoniae strain was isolated from a Dutch patient in a long-term care facility of patients with NDM-producing Enterobacteriaceae is still rare [7].

> ypes of NDMs have been detected, of he most prevalent type [8]. NDM-5 has

RAPID COMMUNICATIONS

Latent introduction to the Netherlands of multiple antibiotic resistance including NDM-1 after hospitalisation in Egypt, August 2013

E Bathoorn (d.bathoorn@umcg.nl)¹, A W Friedrich¹, K Zhou¹, J P Arends¹, D M Borst¹, H Grundmann¹, J W Rossen⁴

1. Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands

Citation style for this article

Bathoorn E, Friedrich AW, Zhou K, Arends JP, Borst DM, Grundmann H, Rossen JW. Latent introduction to the Netherlands of multiple antibiotic resistance including NDM-1 after hospitalisation in Egypt, August 2013. Euro Surveill. 2013;18(42):pii=20610. Available online: http://www.eurosurveillance.org/ViewArticle. aspx?ArticleId=20610

Article submitted on 11 October 2013 / published on 17 October 2013

WGS for discovering new resistance genes/mechanisms

- Three metronidazole resistant *P. bivia* strains
 - UMCG-3721 gluteal infiltrate of a 75-year-old patient resistant to amoxicillin, clindamycin and metronidazole, susceptible for amoxicillin-clavulanic acid and meropenem
 - UMCG-93105 abdominal infection of a 68-year-old patient resistant for amoxicillin, clindamycin and metronidazole, susceptible for amoxicillin-clavulanic acid, piperacillin-tazobactam and meropenem
 - UMCG-8631 from a previously healthy 27-year-old patient treated with cefotaxime, metronidazole, and teicoplanin (later vancomycin) → finally antibiotic treatment was switched to piperacillin/tazobactam and vancomycin

New nim gene (nimK)

Fig 1. An aligment of the amino acids of the new NimK and other Nim proteins.

		10	20	30	40	50
nimK	MI	FREMRRKROO	LSTEECIAIL	EKMTSGVLAL	NEEGGYPYAV	PLS
nimJ	MNE	REMRRKROO	LSEEESIAII	CKATAGTLAL	LGDNDYPYAV	PIS
nimI	MNRTDNME	FREMRRKROO	LSDAECVGTT	ENATSGTLAL	OGDGGYPYAV	PTS
nimH		FREMRREROT	LETFESTUTI	FEMTNGTLAL	HGDNGYPYAV	PVS
nimF	M	FDFMDDKDOO	LOAFFOLATI	FRMUNGVIAL	HCDECVDVAV	DVG
nimE	M	FREMERKAN	LOADESTAIL	FEMENCELAL	HCDNCVPVAV	DT.S
nimD	MI	EDEMODEDOT	TOMPROVATI	EDMENCETAT	HCDDCVDVAV	DTO
nimC	M	ENAMPERARY	LPTELOVAIL	KDMUNCUT AT	HCDCDVDVAV	DVO
nimB		ERAMREKRIL	LPTDESVGII	REMINGTIAL	HGDGDIPIAV.	PVD
nim	MI	REMERKED	LPTEESVAIL	ERMINGTLAL	HGDDGIPIAV.	PIS
nim A	M	EKEMRRKRQQ	LSTEECVAVI	EKMTSGVLAL	NEENGIPIAV.	PLS
IIIIIA	M	FREMRRKRÖT	LPPEESLAIL	ERMTGGTLAL	HGDNGYPYAV	PVS
		60	70	80	90	100
nimK	YVYSDNET	YFHSATKGHE	TELLEKNEN	VSECVIEODH	TVPFFFTTYF	JSV
nimI	YVYADGRI	YFHSALSCHE	VDATERCOK	ASECVIEODE	VHPERYTTEE	RSV
nimI	VUHADCKL	VEHSALKCHE	WDA TRACDK	ASECUTEODE	UHCEPEVEDVE	DQTZ
nimU	TANADGKT	VENOVINCUE	VDAIROCDA	NGEOWNEODD	VHOLETTETE	DOT
minn F	TADORT	VENONMECHI	VDATERNING	VSECVVEQDD	VREALETTIET	NOV.
IIIIIF	IVIADGAL	IFRSAMKGRI	VDAIMENER	VSECVVERDD	VCPGEFTTIF	ROV
nimE	YVYADGKI	YFHCAKIGH	VDAIMQNNK	VSFCVVEQUN.	IKPAEFTTYFI	RSV
nimD	YVYADGKI	YFHSAMQGP	VDAILRNDK	VSECVVEQUE	VKPAEFTTYFI	RSV
nimC	YVYSDGRI	YFHTATQGHE	VDALMRNDK	VSFCVVEQDD	VKSAEFTTYFI	RSV
nimB	YVYADGKI	YFHSAMKGHE	KADAITÖNDK.	VSFCVVEQDD	IRPSEFTTYFI	RSV
nim	AAADNKI.	YFHSAVKGHE	KIDTTKENCN.	VSFCVIGQDC	IVPEEFTTYFI	RSV
nimA	YVYADGKI	YFHGAVQGHE	KMDAIRQHPE'	VSFCVVEQDR:	IVPAEFTTYFI	RSV
		A			A	
	1	10 :	120	130	140	150
nimK	IVFGKARI	LLDEKEKMS2	ALWKLGEKYS	SGNAEALSAE	ISKGKNHLLI	IEI
nimJ	IAFGRIHI	IEDETEKLE!	FARMLVNRYN	PNCEEALCKE	LENGLSRMLM	IRF
nimI	IAFGRIRI	LEDEAERMA	AARLLGDRYH	PHHEEALGRE	LAKSFSHMLV	ICL
nimH	IAFGKARI	LADEGEKCL	AFRLLADKYS	HGEV-GMEAE	IAKGENHLLM	VEI
nimF	VLFGKTRI	LTEEAEKLA	ALSLLADKYS	PGEP-GKDAE	IAKGEN-LLM	VEI
nimE	TVEGRAYT	LTDETEKRM	MTLLVNKYS	FGEP-GLSDE	TAKSENHLTM	VKT
nimD	TVEGKART	TTDENEKEN	ATINTTADKYS	HGEA-GMEAE	MAKGENHLTM	TET
nimC	TPEGRART	LTDETENCA	ALOLLADKYS	SGMP-GLEAV	TAKGERHITM	VET
nimD	TVECKAHT	TUDELEKON	LCLLADKYS	VGED-CMEDE	TARGENHLLT	VET
nim	TVECKART	TUDENERNO	ALGELADKIS	SDNDFCLOFF	THECENHULT	VET
	TUECKARI	TUDENERMO	ALTRIGERIO	SDNFEGHSEE	TREFNILLM	VEL
nimA	IVEGRARI	LTDEVERRA	HUDRUHERIO	SGES-GMQDE	TDRGEDHLVM	VEL
	1	.60	170	180		
nimK	AIEHMTGK	ESIELVRAK	K			
nimJ	DIEHLTGK	EAIELVRRH	QK			
nimI	DIEHMTGK	EAIELVRMK	RORA			
nimH	MVEHMTGK	EA				
nimF	AVEHMTGK	EA				
nimE	DIEHMTGK	EAIELVREK	EKECTSEKTS	3		
nimD	TVEOMTOR	EATELTROP	NGCS			
nimC	DIFHLUCK	FSTFLUPFE	NDM			
mmu	TENTION OF	LOUIDIV NER.	LA TOTAL			

nimB AIEHITGKEAIELTKNRNDRP-----nim TIEHMTGKESIELVRAKE----nimA TVEHMTGKEAICLVRRKGNNRWDAFPSKDVFIR

university of groningen 0.050

Fig 2. A phylogenetic analysis of the *nimK* gene was performed using the maximum likelihood method. Amino acid sequences were aligned using the MUSCLE method in MEGA7. A consensus tree was calculated from 500 bootstraps. The final dataset consisted out of 151 positions.

Metagenomics

Targets of amplicon sequencing

- Eukaryotes: ٠
 - 18S rRNA gene
- Fungi: ٠
 - ITS: internal transcribed ٠ spacer

Forbes 2018

- Bacteria and Archaea •
 - 16S rRNA •
 - rроВ ٠
 - cpn60 •
 - 5S rRNA •
 - 23S rRNA ٠

ncg

Amplicon based metagenomics: species ID using 16S-23S NGS

1 Material	Routine Diagnostic culture	16S rDNA load (Ct)	16S rDNA Sanger result	16S-23S rDNA result	ID score (%)	Relative abundance (%)	Eukaryote DNA (%)	Background (%)				
1 bronchial fluid	Haemophilus influenzae	22,2	Meng sequentie	Streptococcus parasanguinis	99,39	48	0	6				
				Veillonella spp	98,10	13						
1				Prevotella melaninogenica	99,15	8						
				Haemophilus influenzae	99,66	5					_	
				Actinomyces spp	94,99	3						
				Streptococcus spp	95,34	3			gene	•		
				Streptococcus pneumoniae	98,89	3			<u> </u>			
				Selenomonas spp	97,19	2				Relative		
				Streptococcus mitis	99,17	2) score	ahundance	Eukaryote	Backgroun
				Prevotella spp	97,47	1			(%)	(%)	DNA (%)	(%)
				Solobacterium moorei	99,84	1			97.16	85	0	0
				Selenomonas sputigena	100,00	1			97,10 99.25	6	0	0
				Gemella spp	96,00	1			99,25	5		
				Enterococcus spp	90,81	1			95 18	2		
				Leptotrichia genomosp	99,65	1			90.53	1		
				Leptotrichia spp	93,62	1			93.63	1		
				Fusobacterium nucleatum	99,41	0			99,78	1		
				Prevotella spp	92,80	0						
				Megasphaera spp	92,68	0			99,2	99	1	0
				Eubacterium spp	96,35	0						
				Campylobacter concisus	99,82	0			99,27	38	2	2
1irjam Kooisti	ra-Smid,					Mycob	acterium abscess	sus	100	23		
, ,	,		Mycobacterium absces	sus (Molecular detection)		Coryne	bacterium accole	ens	99,8	17		
-						Coryne	bacterium propi	nquum	100	10		
	0017 1 10.7(1).					Entero	coccus faecalis		99,95	5		
et al, SCI Rep.	2017 Jun 13;7(1):					Staphy	lococcus spp		92,95	1		
doi: 10.1038/ 8-017-03458-6.						Klebsie	ella oxytoca		99,83	0		
						Staphy	lococcus capitis		99,91	0		
			Fusobacterium nucleat	um 21,8	Mixed sequence p	atern Prevot	ella pleuritidis		99.59	77	0	0
r				· · · ·		Fusoba	acterium nucleati	um	99.80	21		
Z / U	niversity of					A			400.00			1

Bioinformatics

- *De novo* assembly and subsequent BLASTN analysis using an in-house developed database most accurate and fastest
- OTU clustering considered as a second approach if no pathogen species are identified
- Database needs to be continuously updated

			NGS of 16S-23S rRNA encodir	ig region	Conventional r	nethods
		De novo assembly+BLAST (cut-off: 0.3%)	OTU clustering (cut-off: 0.2%)	Mapping (cut-off: 0.4%)	16S rRNA gene Sanger sequencing	Culturing
s r	Sample number	Bacteria (relative abundance, %)	Bacteria (relative abundance, %)	Bacteria (relative abundance, %)	Bacteria	Bacteria
	27##	Actinotignum schaalii (1.4%) Actinotignum sp. (10.0%) Aerococcus urinae (6.2%) Cutibacterium acnes (1.0%)	Actinotignum schaalii (17.5%) Aerococcus urinae (13.9%)	Actinotignum schaalii (14.2%) Aerococcus urinae (7.4%)	Actinotignum schaalii	Negative
Time*	CLC analysis Hands on	~1 h 20 min ~45 min	~3h ~1h	~2 h 30 min ~4 h		
	Total	\sim 2 h 5 min	~4 h	~6 h 30 min		

*Analysis time is for all 30 samples (including positive and negative control) using a i7-6700 CPU @ 3.40 GHz, 32 GB RAM, 64-bit operating system computer. ¥ In later analysis, Cutibacterium acnes was identified. #Tissue sample (heart valve); ##Fluid sample; Cutibacterium acnes had been formerly referred to as Propionibacterium acnes.

Peker et al., Frontiers in Microbiology, doi: 10.3389/fmicb.2019.00620

Assessment of the added clinical value of 16S-23S rDNA NGS in a clinical setting

If major/minor criteria can not be met

C2: No added clinical value

Metagenomics

Targeted-amplicon sequencing

- Taxonomical assignment
- Relative quantification
- Change over time

Known Genes

No Human DNA More sensitive Less data per sample \$

Shotgun metagenomics

- Taxonomical assignment
- Relative quantification
- Change over time
- Genomes
- Functions &

pathways

• All Genes

Human DNA Less sensitive More data \$\$\$\$\$

By courtesy of Claire Bertelli

First pathogen detections

Nakamura 2008 Emerging infect Dis

Metagenomic Diagnosis of Bacterial Infections

Shota Nakamura, Norihiro Maeda, Ionut Mihai Miron, Myonsun Yoh, Kaori Izutsu, Chidoh Kataoka, Takeshi Honda, Teruo Yasunaga, Takaaki Nakaya, Jun Kawai, Yoshihide Hayashizaki, Toshihiro Horii, and Tetsuya Iida

Author affiliations: Osaka University, Suita, Japan (S. Nakamura, I.M. Miron, M. Yoh, K. Izutsu, C. Kataoka, T. Honda, T. Yasunaga, T. Nakaya, T. Horii, T. Iida); RIKEN Yokohama Institute, Yokohama, Japan (N. Maeda, J. Kawai, Y. Hayashizaki);

Cite This Article

34 year old male

Abstract

To test the ability of high-throughput DNA sequencing to detect bacterial pathogens, we used it on DNA from a patient's feces during and after diarrheal illness. Sequences showing best matches for Campylobacter jejuni were detected only in the illness sample. Various bacteria may be detectable with this metagenomic approach.

enteric pathogens

Negative culture for Neg Norovirus PCR

Pathogen discovery

Metagenomics: C. jejuni

Doan et al. Genome Medicine (2016) 8:90 DOI 10.1186/s13073-016-0344-6

Pathogen discovery

A Novel Cause of Chronic Viral Meningoencephalitis: Cache Valley Virus

Michael R. Wilson, MD, MAS.^{1,2} Dan Suan, MBBS, PhD.³ Andrew Duggins, MBBS, PhD,⁴ Ryan D. Schubert, MD,^{1,2} Lillian M. Khan, BS,⁵ Hannah A. Sample, BS,⁵ Kelsey C. Zorn, MHS,⁵ Aline Rodrigues Hoffman, DVM, PhD,⁶ Anna Blick, BS,⁶ Meena Shingde, FRCPA,⁷ and Joseph L. DeRisi, PhD^{5,8}

Annals of Neurology, 2017;82:105-114

Genome Medicine

RESEARCH

Open Access

(CrossMark

Illuminating uveitis: metagenomic deep sequencing identifies common and rare pathogens

Thuy Doan^{1,2†}, Michael R, Wilson^{3,4†}, Emily D, Crawford^{3,5}, Eric D, Chow³, Lillian M, Khan³, Kristeene A, Knopp³ Brian D. O'Donovan³, Dongxiang Xia⁶, Jill K. Hacker⁶, Jay M. Stewart², John A. Gonzales^{1,2}, Nisha R. Acharya^{1,2} and Joseph L. DeRisi^{3*}

Dengue virus detection and typing from blood samples **17 DENV positive patients** Workflow **Qiamp Viral** Library preparation Sequencing **Data Analysis** extraction Qiagen 1.5 days 1 day 10 minutes – 1 hour 2 hours MiSeq/NextSeq Instrument Nextera XT /TruSeg (Illumina) Kit V2 300 cycles Paired-end (Illumina) Classic approach: Sanger sequencing cDNA, Nucleic acids multiple PCRs Data Sequencing isolation often only E Analysis

gene

university of

groningen

Lizarazo/Couto 2019, In : Journal of Biotechnology: X.2, 10 p., 100009.

Bioinformatics analysis

0.02

umcg

Longest

contig

10,599

10,691

10,763

10,529

10,691

10,711

10,694

10,619

10,716

De Novo

Assembly

2796

6736

10555

DEN-IM: Dengue Virus Identification from Metagenomic and Targeted Sequencing Data (Open source)

An automated workflow for identification, serotyping, genotyping, and phylogenetic analysis of DENV

Implemented in Nextflow alongside Docker containers to facilitate installation

Inês Mendes

João Carriço

https://github.com/B-UMMI/DEN-IM

Mendes et al, biorxiv.org, https://doi.org/10.1101/628073

Human DNA depletion and DNA extraction

Getting rid of the human reads

	Sample 1	Sample 2	Sample 3	Sample 4	Sample 5	Sample 6	Sample 7	Sample 8	Sample 9	Sample 10	Negative control
Sample type	Peritoneal fluid	Pus (abscess)	Synovial fluid	Synovial fluid	Pus (abscess)	Pus (empyema)	Pus (empyema)	Bone biopsy	Pus (abscess)	Sputum	Water
DNA extraction method	Ultra-Deep Microbiome Prep (Molzym)	Ultra-Deep Microbiome Prep (Molzym)	Ultra-Deep Microbiome Prep (Molzym)	Ultra-Deep Microbiome Prep (Molzym)	Ultra-Deep Microbiome Prep (Molzym)	QIAamp DNA Microbiome Kit (Qiagen)	QIAamp DNA Microbiome Kit (Qiagen)	Micro-DX TM (Molzym)	Micro-DX TM (Molzym)	Micro-DX TM (Molzym)	QIAamp DNA Microbiome Kit (Qiagen)
Total number of reads	5,892,978	9,603,346	8,615,810	6,078,166	8,368,930	2,912,802	1,486,700	6,534,866	6,173,132	7,596,836	1,730,738
Mapped reads against hg19	5,249,063 (89.2%)	7,828.746 (81.6%)	8,254,594 (95.9%)	6,015,945 (99.0%)	309,588 (3.7%)	2,877,066 (98.8%)	922,932 (62.2%)	229,149 (3.5%)	6,081,612 (98.5%)	7,337,832 (96.7%)	1,706,861 (98.9%)
Unmapped reads	632,951 (10.8%)	1,770,558 (18.4%)	355,200 (4.1%)	61,099 (1.0%)	8.052.272 (96.3%)	34,506 (1.1%)	561,772 (37.8%)	5,303,803 (96.5%)	89,922 (1.5%)	235,520 (3.3%)	19,805 (1.2%)

Table 1. Characteristics of the samples and mapping of trimmed reads against a human genome hg19 (%) usingCLC Genomics Workbench v10.0.1.

hg19 – human genome

Bioinformatics

	Basespace	QC FastQ Toolkit	Mapping	Taxonomy MetaPhlAn Kraken GENIUS Metagenomics	Gene detection	Assembly	wgMLST
Raw reads	CLC Genomics Workbench	Trimming	Mapping hg19 Mapping reference genomes	Taxonomic profiling Find best match with K-mer spectra	Identify MLST Map Reads to Reference Find Resistance	De novo assembly	SeqSphere
	Linux-based	Trimmomatic	Bowtie2	Metaphlan2 Kraken MIDAS CosmosID	metaMLST ReMatCh Bowtie2/SAMtools	SPAdes	
				Taxonomer			

Figure 1. Scheme of the bioinformatic analysis of the metagenomics samples.

university of

groningen

Unix-based software

Sample	Sample Culture result Conventional identification V		WGS-based	Shotgun metagenomics				
number	(CFU) ^a	(MALDI-TOF)	identification	Kraken ^b	MIDAS ^c	MetaPhlAn ^c		
1	10 ³ 10 ³ 10	E. faecium S. haemolyticus C. glabrata	E. faecium S. haemolyticus —	E. faecium (34.6%) S. haemolyticus (10.1%) —	E. faecium (62.0%) S. haemolyticus (28.0%) —	E. faecium (66.6%) S. haemolyticys (27.7%) —		
2	10 ³ 1 Not determined	<i>E. avium</i> <i>E. coli</i> Anaerobes	# #	Not identified* Not identified* Several species (29.5%)	Not identified* Not identified* Several species (100.0%)	Not identified* Not identified* Several species (100.0%)		
3	1	S. epidermidis	#	S. aureus (0.2%)	Not identified*	Not identified*		
4	10 ³	S. aureus	S. aureus	S. aureus (0.73%)	S. aureus (100%)	S. aureus (100%)		
5	$\geq 10^{5} \geq 10^{5}$ 10^{3} Not determined 10	E. coli K. oxytoca S. anginosus E. faecalis Anaerobes C. albicans	E. coli K. oxytoca * E. faecalis * *	<i>E. coli</i> (9.7%) <i>K. oxytoca</i> (0.5%) <i>S. anginosus</i> (0.07%) <i>E. faecalis</i> (0.3%) Several species (12.7%) —	<i>E. coli</i> (6.5%) <i>K. oxytoca</i> (0.3%) <i>S. anginosus</i> (0.01%) <i>E. faecalis</i> (0.9%) Several species (96.7%) —	E. coli (8.5%) K. oxytoca (0.3%) Streptococcus spp. (0.09%) E. faecalis (0.7%) Several species (90.4%) —		
6	10 ³	E. faecium	E. faecium	E. faecium (0.77%)	Not identified*	Not identified*		
7	10 ²	S. aureus	#	S. aureus (82.9%)	S. aureus (100%)	S. aureus (100%)		
8	10 ³	O. intermedium	O. intermedium	O. anthropi (21.3%)	O. intermedium (99.4%)	O. intermedium (99.1%)		
9	10 ³	S. aureus	S. aureus	S. aureus (22.9%)	S. aureus (100%)	S. aureus (100%)		
10	10 ³	S. marcescens	#	S. marcescens (64.7%)	S. marcescens (99.1%)	S. marcescens (100%)		

CLC Genomics workbench

				Shotgun metagenomics			
Sample number	Culture result (CFU) ^a	Conventional identification (MALDI-TOF)	WGS-based identification	Taxonomic Profiling (CLC) ^b	Best match with K-mer spectra (CLC) ^c		
1	10 ³ 10 ³ 10	E. faecium S. haemolyticus C. glabrata	E. faecium S. haemolyticus —	E. faecium (71%) S. haemolyticus (24%) C. glabrata (100%)	E. faecium (41.4%) S. haemolyticus (13.8%) C. glabrata (0.5%)		
2	10 ³ 1 Not determined	E. avium E. coli Anaerobes	# #	Not identified* Not identified* Several species (97%)	Not identified* Not identified* Several species (13.2%)		
3	1	S. epidermidis	#	Not identified*	S. aureus (4%)		
4	10 ³	S. aureus	S. aureus	Not identified*	S. aureus (9.7%)		
5		E. coli K. oxytoca S. anginosus E. faecalis Anaerobes C. albicans	E. coli K. oxytoca * E. faecalis * *	E. coli (25%) K. michiganensis (0.3%) Not identified* E. faecalis (2%) Several species (70.0%) Not identified*	E. coli (11.5%) Not identified* Not identified* E. faecalis (0.6%) Not identified* C. albicans (<0.05%)		
6	10 ³	E. faecium	E. faecium	Not identified*	E. faecium (4.0%)		
7	10 ²	S. aureus	#	S. aureus (100%)	S. aureus (95.5%)		
8	10 ³	O. intermedium	O. intermedium	O. intermedium (86.0%)	O. intermedium (91.2%)		
9	10 ³	S. aureus	S. aureus	S. aureus (100%)	S. aureus (81.2%)		
10	10 ³	S. marcescens	#	S. marscescens (100%)	S. marcescens (79.7%)		

Web-based tools

5.		Conventional		Shotgun metageno	omics			
Sample number	Culture result (CFU) ^a	identification (MALDI-TOF)	WGS-based identification	Genius (Basespace) ^c	Kraken (Basespace) ^{c,d}	MetaPhlAn (Basespace) ^c	Taxonomer (Utah) ^{b,e}	Cosmos ID ^a
1	10 ³ 10 ³ 10	E. faecium S. haemolyticus C. glabrata	E. faecium S. haemolyticus —	<i>E. faecium</i> (14.4%) <i>S. haemolyticus</i> (55.8%)	E. faecium (25.0%) S. haemolyticus (20.1%) —	E. faecium (65.1%) S. haemolyticys (30.4%) —	E. faecium (22.9%) S. haemolyticus (20.1%) Not identified*	<i>E. faecium</i> (50.3%) <i>S. haemolyticus</i> (22.1%) <i>C. glabrata</i> (88.6%)
2	10 ³ 1 Not determined	E. avium E. coli Anaerobes	# #	Not identified* Not identified* Several species (94.0%)	Not identified* Not identified* Several species (27.0%)	Not identified* Not identified* Several species (54.2%)	Not identified* Not identified* Several species (14.2%)	Not identified* Not identified* Several species (100%)
3	1	S. epidermidis	#	S. aureus (100%)	S. aureus (0.1%)	Not identified*	S. pseudintermedius (3.4%)	Not identified*
4	10 ³	S. aureus	S. aureus	S. aureus (100%)	S. aureus (0.3%)	S. aureus (100%)	S. aureus (8.3%)	S. aureus (100%)
5	$\geq 10^{5} \geq 10^{5}$ 10 ³ 10 ³ Not determined 10	E. coli K. oxytoca S. anginosus E. faecalis Anaerobes C. albicans	E. coli K. oxytoca — [#] E. faecalis — [#] — [#]	E. coli (0.4%) Not identified* S. anginosus (0.03%) E. faecalis (0.8%) Several species (45.0%)	<i>E. coli</i> (10.2%) <i>K. oxytoca</i> (0.5%) <i>S. anginosus</i> (0.4%) <i>E. faecalis</i> (0.3%) Several species (8.0%)	E. coli (7.0%) K. pneumoniae (0.01%) S. anginosus (0.3%) E. faecalis (0.7%) Several species (89.1%) —	E. coli (3.6%) K. michiganensis (0.1%) S. anginosus (0.1%) E. faecalis (0.1%) Several species (60.3%) —	E. coli (7.6%) K. oxytoca (1.7%) S. anginosus (0.09%) E. faecalis (3.7%) Several species (86.2%) Not identified*
6	10 ³	E. faecium	E. faecium	E. faecium (4.2%)	E. faecium (14.8%)	E. faecium (5.5%)	E. faecium (1.4%)	E. faecium (4.1%)
7	10 ²	S. aureus	#	S. aureus (100%)	S. aureus (93.8%)	S. aureus (100%)	S. aureus (14.2%)	S. aureus (100%)
8	10 ³	O. intermedium	O. intermedium	O. intermedium (100%)	O. nthropic (88.9%)	O. intermedium (99.8%)	O. intermedium (13.1%)	O. intermedium (49.5%)
9	10 ³	S. aureus	S. aureus	S. aureus (100%)	S. aureus (99.5%)	S. aureus (100%)	S. aureus (12.7%)	S. aureus (100%)
10	10 ³	S. marcescens	#	S. marcescens (32.5%)	S. marcescens (94.8%)	Serratia spp. (100%)	S. marcescens (1.4%)	S. marscescens (38.4%)

Bioinformatics impact - summary

Method	Total number of bacteria identified ^a	True positives ^a	False positives	False negatives	Sensitivity (%)	PPV (%)
Culture/MALDI-TOF	9	9	0	0	100%	100%
MetaPhlAn (BaseSpace)	16	7	9	2	78%	44%
Genius (BaseSpace)	35	8	27	1	89%	23%
Kraken (BaseSpace)	959	7	952	2	78%	1%
Taxonomer (Full Analysis)	4649	8	4641	1	89%	0%
CosmosID	35	8	27	1	89%	23%
Taxonomic Profiling (CLC Genomics Workbench v10.0.1)	17	6	11	3	67%	35%
Best match K-mer spectra (CLC Genomics Workbench v10.0.1)	12	8	4	1	89%	67%
Kraken (Unix)	198	7	191	2	78%	4%
MetaPhlAn2 (Unix)	15	7	6	4	78%	54%
MIDAS (Unix)	34	7	26	2	78%	21%

AMR detection in the WGS era a no go?

- published evidence for using WGS as a tool to infer antimicrobial susceptibility accurately --> poor or non-existent
- for most bacterial species major limitations are
 - current high-cost
 - limited speed
 - dependency on previous culture
- for most bacterial species there is currently insufficient evidence to support the use of WGS-inferred AST to guide clinical decision making

Antimicrobial resistance

Sample	Conventional identification	Conventional susceptibility testing	WGS CLC Genomics	Shotgun metagenomics			
number	(MALDI-TOF)	(VITEK 2) ^b	Workbench	ReMatCh (Unix)	CLC Genomics Workbench ^a		
1	E. faecium S. haemolyticus	LEV, ERY, CLI OXA, GEN, CIP, FOS, ERY, CLI	erm(B), $msr(C)$, $ant(6')$ -Ia, aph(3')-III, $dfrGblaZ$, $mecA$, $ant(6')$ -Ia, $aph(3')$ - III, $aac(6')$ - $aph(2'')$, $erm(C)$, mph(C), $msr(A)$, $dfrG$	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), blaZ, mecA, erm(C), mph(C), msr(A), dfrG	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), blaZ, mecA, erm(C), mph(C), msr(A), dfrG		
2	E. avium E. coli Anaerobes	DOX, CLI susceptible —	# #	Not detected Not detected <i>catS, lnu(D), lsa(C), cepA-44,</i> <i>tet(Q)</i>	Not detected Not detected catS, lnu(D), lsa(C), cepA-44, tet(Q), fusA		
3	S. epidermidis	OXA, GEN, TEC, FUS, CIP, ERY, CLI	#	Not detected	Not detected		
4	S. aureus	PEN, ERY	blaZ, spc, erm(A)	Not detected	Not detected		
5	E. coli K. oxytoca S. anginosus E. faecalis Anaerobes	susceptible AMX susceptible DOX, CLI —	# blaOXY-1-3 # tet(M), lsa(A) #	<pre></pre>	 Not detected tet(O) cfxA4, tet(Q)		
6	E. faecium	PEN, AMX, CFX, IMP, GENhl, STRhl, LEV, ERY, CLI, AMP/SUL	erm(B), msr(C), ant(6')-Ia, aph(3')-III, aac(6')-aph(2"), dfrG	Not detected	Not detected		
7	S. aureus	PEN	blaZ	blaZ, norA	blaZ		
8	O. intermedium	AMX, PIP/TAZ, CFX, CFT, CTZ, IMP, FOX, TOB, FOS, NIT, TMP	blaOCH-2	blaOCH-5	blaOCH-2		
9	S. aureus	PEN	#	blaZ	blaZ		
10	S. marcescens	AMX, AMC, CFX, FOX, NIT, POL	#	blaSST-1, tet(41), oqxB, aac(6')-Ic	tet(41), oqxB, aac(6')-Ic		

- 1, 7 and 9 genotypes and phenotypes correlated well
- Other samples not all AMR genes explaining phenotypic resistance identified
- 1, 5, 7 and 10 different results ReMatCh vs CLC Genomics workbench

Couto N et al., Sci Rep. 2018 Sep 13;8(1):13767. doi: 10.1038/s41598-018-31873-w

university of

There is hope...

- WGS-based MIC prediction allows reliable MIC prediction for five gonorrhoea antimicrobials Eyre et al. J Antimicrob Chemother 2017; 72: 1937–1947
- WGS can aid in the timely diagnosis of *Mycobacterium tuberculosis* drug resistance and guide clinical decision-making Ruesen et al., scientific reports / (2018) 8:9676 | DOI:10.1038/s41598-018-27962-5
- Whole-genome sequencing effective tool for predicting antibiotic resistance in nontyphoidal *Salmonella*, although the use of more appropriate surveillance breakpoints and increased knowledge of new resistance alleles will further improve correlations *McDermott et al. Antimicrob Agents Chemother 60:5515–5520. doi:10.1128/AAC.01030-16.*

Turn-around-time

• Will depend on eventual pre-enrichment, extraction methods, sequencing technologies, computational platforms

Sample type	Sequencing platform	Total reads	Matching reads (percentage)	Pathogen	ТаТ	Reference
CSF	MiSeq	3,063,784	475 (0.016%)	Leptospira santarosai	48h	Wilson 2014 N Eng J Med
Spinal cord or Brain	Illumina	8.3 – 29.1 Mio	15-9000 (<0.033%)	<i>M. Tuberculosis</i> JC polyomavirus EBV	24h	Salzberg 2016 NNN
BAL	Minlon	NA	1 x 3,217 bp 6 x 909-6,288 bp	P. aeruginosa S. aureus	9h	Pendleton 2017 Am J Crit Care Med
Stools	Minlon	NA		K. pneumoniae	Few h	Leggett 2017 BioRxiv
Urine	Minlon	NA	(76%-98%)	E. coli K. pneumoniae E. cloacae	4h	Schmidt 2017 J Antimicrob Chemother

Metagenomic Typing

Study of the microbiome in Obstructive Pulmonary Diseases

44 COPD patients followed longitudinally during stability and acute exacerbations

- Induced sputum at each of 6 visits
- Cell count/differential
- RNA for metagenomic sequencing
- Extensive clinical phenotyping

Treatments:

- Doxycycline
- Bronchodilators
- +/- Steroids

Cross sectional data at AECOPD

Samples

Cross sectional data at AECOPD: Host immune response

Tracking antibiotic resistance

Challenges

- Clinical sensitivity and specificity → depletion human DNA / enrichment microbial DNA/RNA
- Genotype not always phenotype (AMR) \rightarrow RNAseq?
- Which genes belong to which pathogen ? → Single cell sequencing/ cross-linking plasmid and genome/CG content?
- Presence of contaminant DNA \rightarrow reagents, sample taking
- Persistence of DNA from dead microbes \rightarrow RNAseq
- Colonization versus infection → host response, RNAseq?

Collaborations and acknowledgements

UMCG – Guide

Natacha Couto Kai Zhou Silvia Garcia-Cobos Monika Chlebowicz Bhanu Sinha Linda Veloo Jan Maarten van Dijl Ymkje Stienstra Artur Sabat Alex W Friedrich Erik Bathoorn Mariette Lokate Xuewei Zhou Nilay Peker Ana Carolina da Cruz Campos Leonard Schüle Maaike van den Beld Mithila Ferdous **Erley Lizarazo Forero** Kathleen Boiten Sigrid Rosema Brigitte Dijkhuizen **Erwin Raangs** Fenna Bosma **Yvette Bisselink Ruud Deurenberg**

UMCG – Guide cont. Willy Baas Hamideh Ahmad Viktoria Akkerboom Jessica de Beer Henry Wiersma Anna Rubio Garcia Suruchi Nepal Adriana Tami Maria Eugenia Grillet Maria Vincenti-Gonzalez Corinna Glasner Jerome Lo Ten Foe Greetje Kampinga Maarten van Putten **Carolien Doorenbos**

UMCG – Griac

Maarten van den Berg Ben Ditz Jeunard Boekhoudt Huib Kerstjens Irene Heijink Martijn Nawijn Reinoud Gosens Alen Faiz

Certe

Mirjam Kooistra-Smid Evert van Zanten Guido Wisselink

eriba Victor Guryev

UCSF Stephanie Christenson

Universitätsklinikum Tübingen Silke Peter Ingo Autenrieth

Faculdade de Medicina de Lisboa

João André Carriço Catarina Inês Marques de Sousa Mendes Mário Ramirez UMC Utrecht Amphia/ MicroVida Jan Kluytmans Marjolein Kluytmans – van den Bergh Suzan Pas Eefje Schrauwen Joep Stohr

Universidade do Estado do Rio de Janeiro Paulo Damasco Ana Claudia Rosa

Metanet (not yet listed)

Henrik Torkil Westh Alexander Melmann Dag Harmsen Robert Schlaberg

I apopologize in advance if I forget to mention people – please contact me afterwards if you think your name should be on this slide

