

Introduction to Phylogenetics

Sandra Reuter, Medical Center - University of Freiburg, Germany

Disclosure slide

Disclosure of speaker's interests				
(Potential) conflict of interest	none			
Potentially relevant company relationships in connection with event ¹	none			
 Sponsorship or research funding² 	none			
 Fee or other (financial) payment³ Shareholder⁴ Other relationship, i.e⁵ 				

Comparison of bacterial genomes

Pathogenicity islands

Prophages

Gene rearrangements

Pseudogenes

Phase variation

Whole genomes

Single nucleotides

Comparison of bacterial genomes

Single genomes / nucleotides

- DNA sequence browser (Artemis)
- Investigate the makeup of a single (representative) genome
- First genome projects

Multiple genomes (2-6)

- Artemis Comparison Tool (ACT)
- Direct pairwise comparison
- Detect chromosomal difference between a limited number of fully sequenced genomes

But what about "unlimited" genomes?

Multilocus-sequence typing (MLST)

Uses 7 housekeeping genes

Allele profile > Sequence Type (ST) > Clonal Complex (CC)

Advantages:

Portable, transferrable, unchangeable

Disadvantages:

Limited resolution in outbreaks and epidemic circulating clones

Multilocus-sequence typing (MLST)

With epidemic clones circulating, typing is at its limit •EMRSA-15, *K. pneumoniae* ST258, *E. coli* ST131

Resequencing

Aims to capture information on

- Single Nucleotide Polymorphisms (SNPs)
- insertions and deletions (indels)
- Copy Number Variants (CNVs)
 between variants of the same bacteria

As sequences diverge from the reference, mapping becomes progressively less effective

Will give information on the "core genome" – what is shared between isolates (e.g. of a species) – but not on the accessory genome – what is shared only between selected members, or which are unique to a sample

Steps in mapping

Choose a fully finished reference genome

Take fastq reads from machine

Use alignment software (BWA, smalt, tophat,...) to find matches in the reference genome

Identify SNPs Align reads to Paired-end and INDELs, reference genome, sequence reads generating a generating a in FASTQ file VCF/BCF SAM/BAM file file

Steps in mapping

Imagine sequencing a zebra...

Reference genome

Steps in mapping

After raw read mapping: filtering

Low quality reads

- Low quality mapping
- Consider indels (short insertions/deletions)?

Filter for read depth (e.g. only accept SNPs if in at least 4 reads)

Filter SNPs: presence in at least 75% of reads

What are we looking for / what can mapping do for you?

Phylogenetics SNP calling

Looking at copy number

Looking at presence/absence

Checking for errors

Sequencing quality control

Suitability of chosen reference

Assess sequencing quality and coverage

SNPs can be used to draw a phylogenetic tree

If a SNP is shared by a number of isolates, it is evidence that they may be related and form a group on the tree

Homoplasies do not "fit" the tree

Blue = SNP that fits tree. Red = Homoplasy Single SNPs may arise independently. However, if multiple SNPs/patterns are consistent, they may be a sign of recombination!

SNP Barcode

Recombination of ompA in Chlamydia trachomatis

Background information on phylogenetic trees

Homology vs Homoplasy:

- Homology describes similarity due to common inheritance from an ancestor. Homologous characters are useful similarity.
- Homoplasy describes similarity due to independent acquisitions of the same or superficially similar character states. Homoplasic characters provide a misleading picture of phylogeny.

Phylogenetic Systematics

- Phylogenetics aims to reconstruct the ancestry of biological lineages
- It regards homology as evidence of common ancestry
- Relationships are usually portrayed on tree diagrams
- Monophyletic groups (clades) contain taxa that are more closely related to each other than to any outside the group
- Distance between taxa reflects a decreasing number of shared, homologous characters

Cladograms and Phylograms

Rooted and unrooted trees

Total distance =

Building a phylogenetic tree

- Identify protein, DNA or RNA sequences of interest
 - Fasta format file of concatenated sequences
- Multiple sequence alignment not for mapping-based trees!
 - ClustalX/muscle
- Construct phylogeny
 - PHYML, RAxML
- View and edit tree
 - FigTree, iTOL, microreact

Note: There are many (many) other programs for alignment, tree building and tree viewing

Estimation of a phylogenetic tree

- Phylogenetic Markers (e.g. 16S rDNA)
 - Ubiquitous distribution
 - Functional consistency (homology)
 - Size (proportional to that information content)
 - Conserved as well as highly-variable structural elements
 - No horizontal / lateral gene transfer (recombination)

Constructing phylogenies

- Stages in phylogenetic analysis:
 - 1. Data preparation

multiple alignment (DNA / protein)

2. Data scoring

distance methods: pairwise distances between sequences discrete methods: each site in the alignment as a character

3. Tree sorting

processes for searching 'tree-space'

4. Estimation

identifying the most acceptable tree topology and model parameters using a variety of methods ('clustering' or 'optimising' methods).

Phylogenetic methods:

	Clustering	Optimising
Distance	Neighbour-joining UPGMA	Minimum evolution
Discrete		Maximum parsimony Maximum likelihood Bayesian inference

Tree estimation

- Evolutionary models
 - Jukes Cantor (JC)
 - JC69: all substitutions equally likely, all bases same frequency
 - Kimura 2 Parameter (K2P), Hasegawa/Kishino (HKY85)
 - Specific likelyhoods for transition and transversions, all bases same frequency
 - General Time Reversal (GTR)
 - GTR: each substitution with their own likelyhood, depending on specific base frequency
 - Depending on the model, the tree will change

Tree estimation – distance methods

Method

- Pairwise distances between taxa are calculated (many options)
- Tree topology and branch lengths are estimated from this distance matrix.
- E.g. Neighbour-joining, UPGMA, Minimum Evolution

ACGGACCTATCTGGTCTAATTAAA |X||||X|||X|||||||||||| ATGGACCAATCCGGTCTAATTAAA

P distance 0100000000000000000000000000000000 = 3

With an evolutionary model, e.g. transversions with a higher score than transision:

0100002000200000000000 = 5

a single tree is estimated, in short time, minimal computational expense
 method lacks accuracy (no correction for potential biases), precision, and there is no optimising criterion

Tree estimation – maximum parsimony

Method

- Evolution is the path of least resistance
- Every topology is valid, the quality is tested
 - Nearest neighbour interchange (NNI)
 - Also to calculate branch lengths
- The parsimoniest tree contains the least number of mutations

Tree estimation – maximum likelihood

Method

- Each topology is valid
- Likelihood is the probability of the data given a specific model
- Models
 - Several substitution at the same position
 - Transition occurs more often than transversion (change in class of base)
 - Differences in conservation of particular sites
 - E.g. 3. position in a triplet codon
 - Within a gene for correct function
- Highly accurate (biological realism via substitution model)
- Solution Robust statistical context to evaluate specific hypotheses
- Single tree produced that is generally precise
- Complexity of estimation process: slow & computationally demanding

Bootstrapping

- Bootstrapping is a way to produce a measure of confidence in the relationships found in a phylogenetic analysis
- Characters (sites/amino acids) are resampled with replacement to produce a set of replicate data sets
- Each replicate is analysed (e.g. with parsimony/distance/maximum likelihood)
- Frequency of occurrence of groups in the results of these analyses is a measure of support for those groups
- Bootstrap proportions (BPs) are often represented as a number on each branch of a tree showing how often that relationships occurred in the replicate analyses

	characters								
Taxa	1	2	3	4	5	6	7	8	9
А	A	С	С	Т	G	А	Т	G	С
В	A	G	С	Т	G	G	Т	Т	С
С	A	G	С	А	G	А	Т	G	G
D	Т	С	С	Τ	С	G	Т	G	С
Ε	Т	С	Τ	Τ	А	А	Т	G	С

Random number generator: 9

	Character b
Taxa	2 5 9 2
А	CGCC
В	GGCG
C	GGGG
D	СССС
Е	CACC

charactore

Examples of "tree gazing" – Vibrio cholerae

- Step-wise evolution over time
- "waves"
- Point-source trajectory
- The "dinosaur"

Mutreja, Nature 2011, 477(7365):462-5.

Examples of "tree gazing" – effect of recombination: *Streptococcus pneumoniae*

Examples of "tree gazing" – Staphylococcus aureus

- Evolution over long time periods
- Distinct lineages
- The "broom sticks"

Examples of "tree gazing" – S. aureus

ST22-A2 "head" "EMRSA-15" - hospital-adapted ST22-A1 "pre-head" non-fluoroquinolone resistant "the tail" - communityacquired

Examples of "tree gazing" – S. aureus

- Outbreak investigation
- Cluster with one isolate sticking out
 - Hypermutator phenotype
 - Accumulation of SNPs due to mutS/
 L mutation (inactivation of error checking)
 - Beware of absolute numbers of SNPs!

Examples of "tree gazing" – S. aureus

