Orthology bonus extra exercise

Bonus exercise using OrthoDB orthology data to build an orthology landscape

*Required

Your mission:

1. Collect counts of genes per species for all hymenopteran orthologous groups.
2. Compute universality (% of species) and duplicability (% of multi-copy species).

3. Plot orthology landscape using R.

Scripts are provided, as well as pre-computed intermediate and final results files, but the main idea is
for you to use the hints and code snippets provided to write your own scripts and develop them while

progressing through the exercise.

From the Moodle site, find the folder under 'Day 2 Rob Waterhouse' called 'Orthology bonus', inside
you should see several scripts and datafiles, so if you get stuck then you can try using these instead

of writing your own scripts.

D. melanogaster orthology landscape, Waterhouse, COIS 2015

Nurl‘lber of ﬂﬂhﬁlmus groups

107

specific / sparse
Current Opinion in Insect Sclence

1. To proceed you must accept this mission ... *

| accept the mission!

1. Collecting gene & species counts
Some hints:

* View OrthoDB API help page to find out about query structures:
http://www.orthodb.org/?page=api

* We aim to collect counts of genes per species for all hymenopteran orthologous groups
* NCBI taxonomy ID for the Hymenoptera level (node) is 7399

* To get a list of all Hymenoptera groups the APl URL query would be:
http://www.orthodb.org/search?level=7399

* Note that the default limit for OrthoDB API queries is 1000, so if more than 1000 groups are returned
you will have to increase the limit by adding, e.g. &limit=25000 to the API URL

* To view the same query using the OrthoDB website instead of the API, try:
http://www.orthodb.org/?level=7399

2. How many Hymenoptera groups are
returned? *

2. Scripting collection of orthologous groups
Some hints:

* For Perl scripts: #!/usr/bin/perl
* For Python scripts: #!/usr/bin/python

* There are handy Perl and Python modules to connect to APIs and to interpret the returned JSON
(JavaScript Object Notation) results:
use REST::Client; # Perl for database connection and querying

use JSON; # Perl for JSON to Perl interoperability

import requests # Python for database connection and querying
import json # Python for JSON to Python interoperability
e e >

* Example in Perl:

Load required modules:

use lib '/path/to/your/MyPmods'; # location of your locally installed REST module
use REST::Client;

use JSON;

Set connection to the OrthoDB website:

my $host = 'http://www.orthodb.org/";

my $client = REST::Client->new(host => $host);

define the query to get the JSON result
Sclient->GET("search?limit=25000&level=7399");

Convert JSON to PERL data structure

my $result = decode_json($client->responseContent());
Get all orthologous groups returned from the query

my @groups = @{ $result->{'data'} };

Print the total number of groups returned

print scalar(@groups);

* Example in Python
Load required modules:
import requests

https://www.google.com/url?q=http://www.orthodb.org/?page%3Dapi&sa=D&ust=1536045835447000&usg=AFQjCNHMoOp9Dis2EAjv3XaXxIflYF5j4A
https://www.google.com/url?q=http://www.orthodb.org/search?level%3D7399&sa=D&ust=1536045835447000&usg=AFQjCNHJ0ISUhpA3WwOhXPnejHUg9Bo-_Q
https://www.google.com/url?q=http://www.orthodb.org/?level%3D7399&sa=D&ust=1536045835447000&usg=AFQjCNFGUnE7FVBH4BwlFlPDnqud5x7C1g
https://www.google.com/url?q=http://www.orthodb.org/&sa=D&ust=1536045835448000&usg=AFQjCNEEv1rDxdXf9o0tzgdVEiYQPJIq6Q

import json

define the query to get the JSON result

url = "http://www.orthodb.org/search?limit=25000&level=7399"
myResponse = requests.get(url)

Convert JSON to PYTHON data structure

jData = json.loads(myResponse.content)

NB: Did not work in python3, have to decode from bytes to strings with:
jData = json.loads(myResponse.content.decode('utf-8'))

Get all orthologous groups returned from the query

groups = jData['data']

Print the total number of groups returned

print(len(groups))

3. Were you successful? *

Yes

No, but | want to continue regardless

3. Scripting collection of gene & species counts
Some hints:

* The previous step returned a list of all orthologous groups, so now we can loop through this list to
fetch the genes from each species in these groups.

* Perhaps start with a low query limit (e.g. 100) just to get it working.

* Perl example of looping through the groups returned, and printing the results to file:
open(OUT, ">My_species_genes_counts.txt") || die $!;
foreach my $group (@groups) {

Sclient->GET("orthologs?id=$group");

Convert JSON to PERL data structure

my $result = decode_json($client->responseContent());

Loop through each species in the group

foreach my $species (@{ $result->{'data'’} }) {

my $spec=$species->{'organism'}{'id"}; # get species NCBI taxonomy ID
my $orgn=$species->{'organism'}{'name'}; # get species name
my @genes=@{$species->{'genes'}}; # get all genes for this species
print OUT "$group\t$spec\t$orgnit” . scalar(@genes) . "\n";
}

}

close(OUT);

e et B> >

* Python example of looping through the groups returned, and printing the results to file:

groupToSpeciesToCountDict = defaultdict(dict) ## Dictionary where we will store all genes belonging
to an orthology group belonging to a species. Note its a dictionary in a dictionary
for group in orthoGroups: ## Iterate over all orthology groups we retrieved from the JSON data
query = 'orthologs?id="+group ## query to retrieve all genes belong to an ortholog
response = requests.get("http://www.orthodb.org/"+query)
jsonData = json.loads(response.content.decode('utf-8')) ## Convert the response we got from
the API to python JSON format
for value in jsonData['data’]: ## Iterate over all JSON data and assign all required parts to
variables
speciesld = value['organism']['id']
speciesName = value['organism']['name]
speciesldToNameDict[speciesld] = speciesName ## Assign a species numerical identifier to
a human readable species name
speciesGenes = value['genes']
groupToSpeciesToCountDict[group][speciesld] = len(speciesGenes) ## Assign the amount
of genes belonging to an orthologous group, for each species

https://www.google.com/url?q=http://www.orthodb.org/search?limit%3D25000%26level%3D7399&sa=D&ust=1536045835448000&usg=AFQjCNHLKeTTs6NX_j8bQqd_teO6mxCZJw
https://www.google.com/url?q=http://www.orthodb.org/&sa=D&ust=1536045835448000&usg=AFQjCNEEv1rDxdXf9o0tzgdVEiYQPJIq6Q

4. Were you successful? *

Yes!

No, but | want to continue regardless

4. Collection of all gene & species counts
Some hints:

* Now you can count genes per species per group you can loop through all groups and save all the
counts per species and print a complete data matrix that will be easy to extract what you need from
for plotting using R later.

* Perl example of counting number of genes per species in each group:
First loop through each returned group to count and save the number of genes per species
undef my %all_species; # hash to save full species list
undef my %group2species2count; # hash to save gene count per species per group
foreach my $group (@groups) {
Define the query to return all orthologs from the group
$client->GET("orthologs?id=$group");
Convert JSON to PERL data structure
my $result = decode_json($client->responseContent());
Loop through each species in the group
foreach my $species (@{ $result->{'data’} }) {

my $spec=$species->{'organism'}{'id'}; # get species NCBI taxonomy ID
my $orgn=3%species->{'organism'}{'name'}; # get species name
$all_species{$spec}=$orgn; # save species ID to name hash
my @genes=@{$species->{'genes'}}; # get all genes for this species
$group2species2count{$group}{$spec}=scalar(@genes); # save gene count

}
}

Now open output file ($level defined earlier, Hymenoptera node)
open(OUT,">ODB_SPECIES_GENES_COUNTS_from_$level\.txt") || die $!;
print OUT "OrthoGroup\tSpecies\tGenes\tSCspecies”; # column names for output file
Open species list output file (so you have a record of all species names)
open(LST,">ODB_SPECIES_GENES_COUNTS_from_$level_species-list.txt") || die $!;
foreach my $spec (sort { $all_species{$a} cmp $all_species{$b} } keys %all_species) {
print LST "$all_species{$spec\t$spec\n";
print OUT "\t$spec"; # column names for output file

}
close(LST);
print OUT "\n"; # add return to end of header line for output file
foreach my $group (sort @groups) {
my $allcounts="; # string to collect all gene counts (in sort order)
my $specount=0; # species counter
my $gencount=0; # gene counter
my $scpcount=0; # single-copy species counter
foreach my $spec (sort { $all_species{$a} cmp $all_species{$b} } keys %all_species) {
if(defined($group2species2count{$group}{$spec})) {
$allcounts.="\t$group2species2count{$group}{$spec}"; # add count to string
$specount++; # increment species counter
$gencount+=$group2species2count{$group}{$spec}; # sum gene counter
if single-copy, increment single-copy species counter
if($group2species2count{$group}{$spec}==1) { $scpcount++; }

else { $allcounts.="\t0"; } # if not defined then count=0
}
print GroupID, number of species, number of genes, number of single-copy species
print OUT "$group\t$specount\t$gencount\t$scpcount”;
print ordered string of counts per species (including zeros)
print OUT $allcounts . "\n";

}
close(OUT);

* Python example of counting number of genes per species in each group:
speciesldToNameDict = {}
groupCount =0
groupToSpeciesToCountDict = defaultdict(dict) ## Dictionary where we will store all genes belonging
to an orthology group belonging to a species. Note its a dictionary in a dictionary
for group in orthoGroups: ## Iterate over all orthology groups we retrieved from the JSON data
query = 'orthologs?id="+group ## query to retrieve all genes belong to an ortholog
response = requests.get(host+query)
if response.status_code != 200: ## Response not 200 means its an erroneous query
print('Bad query: '+host+query+'\n')
print('Response code: '+str(response.status_code)+'\n')
print('Response content: '+response.text+'\n’)
sys.exit() ## Quits the script, because we have a bad query
jsonData = json.loads(response.content.decode('utf-8')) ## Convert the response we got from
the API to python JSON format
for value in jsonData['data']: ## Iterate over all JSON data and assign all required parts to
variables
speciesld = value['organism']['id']
speciesName = value['organism']['name']
speciesldToNameDict[speciesld] = speciesName ## Assign a species numerical identifier to
a human readable species name
speciesGenes = value['genes']
groupToSpeciesToCountDict[group][speciesld] = len(speciesGenes) ## Assign the amount
of genes belonging to an orthologous group, for each species
groupCount += 1
if groupCount % 10 == O:
print(str(groupCount)+' orthologous groups processed ... "+str(datetime.now()))

Create a file where we will store all the processed data
outfile = open('ODB_SPECIES_GENES_COUNTS_from_'+str(level)+".txt",'w")
outfile.write('Orthogroup\tSpecies\tGenes\tSCspecies') ## Start of the header of the file

Create a file where we will store the IDs belonging to a species code
outfile2 = open('ODB_SPECIES_GENES_COUNTS_from_'+str(level)+'_species-list.txt','w')

Write a tabular file with species ID - species name pairs
speciesldToNameDict = sorted(speciesldToNameDict.items(),key=operator.itemgetter(1)) ## Sorts the
dictionary by its values (species names)
for species in speciesldToNameDict:

outfile2.write(species[1]+\t'+species[0]+'\n")

ouftfile.write("\t'+species[0]) ## Additionally, add each species name to the header of our main
output file
outfile2.close()

outfile.write("\n")

Iterate over all orthology groups, and for every orthology group and every species the amount of
orthologs belonging to the orthology group and the species
for group in sorted(groupToSpeciesToCountDict):
allCounts ="
specCount =0
geneCount =0
scpCount =0
for spec in speciesldToNameDict: ## Iterate over the species
specld = spec[0] ## Species identifier
if specld in groupToSpeciesToCountDict[group]: ## If the species has orthologs belonging to
this orthology group, continue
allCounts += "\t'+str(groupToSpeciesToCountDict[group][specld]) ## Write the amount
of species specific orthologous genes belong to the group to the output file
specCount += 1 ## Increase the amount of species having a gene belonging to this
orthology group
geneCount += groupToSpeciesToCountDict[group][specld] ## Increase amount of
genes belonging to the orthology group by the amount of genes belong to this species orthology
group
if groupToSpeciesToCountDict[group][specld] == 1: ## If this orthologous gene is
single copy, increase single copy counter by 1

scpCount +=1
else: ## If species doesn't have an orthologue, write '0' to the output file
allCounts +="\t0'
ouftfile.write(group+\t'+str(specCount)+\t'+str(geneCount)+\t'+str(scpCount)+allCounts+\n") ##
Process all numbers to the output file
outfile.close()

* This type of query can take some time, so if you have managed to get it working but wish to proceed
you can use the counts file prepared earlier:

* From the Moodle site, find the folder under 'Day 2 Rob Waterhouse' called 'Orthology_bonus', inside
you should see the text file called 'ODB_SPECIES _GENES_COUNTS_from_7399.txt'

* Right click to get the full URL of the file (Copy Link Location) and then wget it to your VM

$ wget

https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/ODB_SPECIES GENES COUNTS_fr
om_7399.txt

* NB: if the URL you copied ends with '"?forcedownload=1' then delete this part

5. Were you successful? *

Yes

No, but | want to continue regardless

5. Prepare grid counts for plotting

Now we can choose a species for which we want to plot an orthology landscape, and then prepare the
counts of each type of orthologous group - from universal to specific and all single-copy to all multi-
copy.

Some hints:

* Look at the species-list file you made earlier to choose your species (i.e. to know which NCBI
taxonomy ID to select)

* Or from the Moodle folder

$ wget
https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/ODB_SPECIES_GENES_COUNTS_fr
om_7399_species-list.txt

* Essentially, we need to examine each orthologous group and see where it falls on the grid (see
image below) in terms of its universality (% of total species) and duplicability (% single/multi-copy),
and count the numbers of groups that fall into each section of the grid.

* Perl example of preparing the grid counts:

my $spec=7460; # Apis mellifera selected here, you could choose another species
Open full counts file from previous step
open(IN,"ODB_SPECIES_GENES_COUNTS_from_7399.txt") || die $!;
my @lines=<IN>;
close(IN);
my $header=shift(@lines); # save the header line, contains order of species
chomp($header);
my @columns=split(\s+/,$header); # split header line into array
my $selected=0;
for (my $i=4; $i<=$#columns; $i++) {
if($columns[$i]==$spec) { $selected=$i; } # to find which column is your selected species
}

my $maxspecies=0; # to find out the maximum number of species possible
undef my %group2species; # hash to save species counts per group
undef my %group2singles; # hash to save single-copy species counts per group
Now loop through each line (group) and get species and single-copy species counts
foreach my $line (@lines) {

chomp($line);

my @data=split(\s+/,$line);

https://www.google.com/url?q=https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/ODB_SPECIES_GENES_COUNTS_from_7399.txt&sa=D&ust=1536045835449000&usg=AFQjCNGMD3Rb7KwZCeU_nynquFHZXhfqcg
https://www.google.com/url?q=https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/ODB_SPECIES_GENES_COUNTS_from_7399_species-list.txt&sa=D&ust=1536045835450000&usg=AFQjCNGDbSNkMitQpwHXUC1Cyi2mgUNwcQ

if(fdata[1]>$maxspecies) { $maxspecies=%data[1]; } # to save the highest species count

if($data[$selected]==0) { next; } # ignore group if selected species=0
$group2species{$data[0]}=$data[1]; # save species counts per group
$group2singles{$data[0]}=$data[3]; # save single-copy species counts per group
}
undef my %grid_counts; # hash to save group counts per grid category

Make a 20x20 grid and count number of groups per category:
foreach my $group (sort keys %group2species) {

for(my $i=0;%i<=1;$i=$i+0.05) { # universality categories from 0 to 1 by 0.05
for(my $j=0;%j<=1;$j=$j+0.05) { # duplicability categories from 0 to 1 by 0.05
my $k=0;
if($j==0) { $k=0-0.01; } # if zero set just below zero because later we use greater
than '>' $k
else { $k=9j; }

$k=sprintf("%.2f",$k);
$i=sprintf("%.2f",$i);
$j=sprintf("%.2f",$;);

my $iplus=sprintf("%.2f",$i+0.05);
my $jplus=sprintf("%.2f",$j+0.05);

my $id="$i:$j"; # 1D of the grid category, universality category : duplicability
category
my $prop_species=sprintf("%.2f",$group2species{$group}/$maxspecies); # calculate

proportion of species (universality)
my $prop_singles=sprintf("%.2f",$group2singles{$group}/$group2species{$group}); #
calculate proportion of single-copy species (duplicability/single-copyness)
if universality is between A & B and duplicability is between X & Y then increment grid
category counter:
if($prop_species>$i && $prop_species<=$iplus && $prop_singles>$k &&
Sprop_singles<=3$jplus) {
if(defined($grid_counts{$id})) { $grid_counts{$id}++; }
else { $grid_counts{$id}=1; }
print "$group $id SP: $i < $prop_species <= Fiplus\tSC: $k < $prop_singles <= $jplus\n";
}
}
}
}

Now print out counts per category across the grid, in two columns: grid ID and group count
These data will be used as input for plotting using R
open(OUT,">grid_counts_$spec\.txt") || die $!;
print OUT "BINMCNT\n";
for(my $i=0;%i<1;$i=$i+0.05) {
for(my $j=0;%j<1;$j=$j+0.05) {
Si=sprintf("%.2f",$i);
$j=sprintf("%.2f",$j);
my $id="3i:$j";
if(defined($grid_counts{$id})) { print OUT "$id\t$grid_counts{$id}\n"; }
else { print OUT "$id\t0O\n"; }
}

}
close(OUT);

* Python example of preparing the grid counts:
specld ='7460' ## Apis mellifera selected here, you could choose another species

print('START: "+str(datetime.now()))
print('Selected species: '+specld+\n')

Open full counts file from previous step

infile = open('ODB_SPECIES_GENES_COUNTS_from_7399.txt")

header = infile.readline().strip() ## save the header line, contains order of species
columns = header.split('\t') ## Convert header line into a list = columns

selected = 0

for i in range(0,len(columns)): ## find out which column belongs to your selected species
if columns]i] == specld:
selected = i

maxSpecies =0
groupToSpecies = {} ## dictionary to save species counts per group
groupToSingles = {} ## dictionary to save single-copy species counts per group

Now loop through each line (group) and get species and single-copy species counts
for line in infile.readlines():
ssline = line.strip().split("\t")
if int(ssline[1]) > maxSpecies: # to save the highest species count, i.e. total
maxSpecies = int(ssline[1])
if ssline[selected] !="'0": # ignore group if selected species=0, else process counts and save in
respective dictionary
groupToSpecies[ssline[0]] = int(ssline[1])
groupToSingles[ssline[0]] = int(ssline[3])

gridCountDict = defaultdict(int) ## dictionary to save group counts per grid category

Make a 20x20 grid and count number of groups per category:
for group in sorted(groupToSpecies.iterkeys()):
for i in range(0,100,5): # universality categories from 0 to 1 by 0.05 (python does not allow steps
of 0.5, so everything is done x100 and later divided by 100)
for j in range(0,100,5): # duplicability categories from 0 to 1 by 0.05
iSmall = round(i/100.0,2) ## Divided by 100 to get 'real' steps we want
jSmall = round(j/100.0,2)

k=0

if jSmall == 0: # if zero set just below zero because later we use greater than '>' $k
k = 0-0.01

else:
k = jSmall

id = str(iSmall)+":"+str(jSmall) ## ID of the grid category, universality category :
duplicability category
iPlus = round(iSmall+0.05,2)
jPlus = round(jSmall+0.05,2)
propSpecies = round(groupToSpecies[group]/float(maxSpecies),2) ## calculate
proportion of species (universality)
propSingles = round(groupToSingles[group]/float(groupToSpecies[group]),2) ##
calculate proportion of single-copy species (duplicability/single-copyness)
if universality is between A & B and duplicability is between X & Y then increment
grid category counter:
if propSpecies > iSmall and propSpecies <= iPlus and propSingles > k and
propSingles <= jPlus:
gridCountDict[id] += 1
print group+' '+id+' SP: '+str(iSmall)+' < '+str(propSpecies)+' <= "+str(iPlus)+"\tSC:
"+str(k)+' < '+str(propSingles)+' <= "+str(jPlus)

Now print out counts per category across the grid, in two columns: grid ID and group count
These data will be used as input for plotting using R
outfile = open('grid_counts_'+specld+".txt','w")
outfile.write('BIN\tCNT\n")
foriin range(0,100,5):
for j in range(0,100,5):
iSmall = round(i/100.0,2)
jSmall = round(j/100.0,2)
id = str(iSmall)+"'+str(jSmall)
if id in gridCountDict:
outfile.write(id+"\t'+str(gridCountDict[id])+"\n")
else:
outfile.write(id+'\t0\n")

outfile.close()
print('END: '+str(datetime.now()))

* If you did not manage to get it working but wish to proceed you can use the counts file prepared
earlier which you can download from the Moodle site:

$ wget https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/grid_counts_7460.txt

* Or Perl/Python scripts already prepared

$ wget https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/bonus-prepare_grid_counts.py.
$ wget https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/bonus-prepare_grid_counts.pl

Universality versus Duplicability

present in few/none <= Universality => present in most/all

05 | 510 | 10-15 | 15-20 | 20-25 | 25-30 | 3035 | 3540 | 40.45 | 45.50 | 5055 | 55.60 | 60-65 | 65-70 | 70.75 | 75-80 | 80-85 [8590 [90-95 [95-100
05
~
21510
8]
L s
i}
= |52
=
> 2028
—
IS
n |25
(o]
£
3035
N
I
35.40
>
hr
" a0
-
ﬁ 4550
3]
" |50
8
a |0
]
v |6065
>
o, |es70
(o]
(6]
I |707s
@
—
o -
o [0
-—
0 |g0gs
>
o [s5%
(5]
2 [e09
95.100

6. Were you successful? *

Yes

No, but | want to continue regardless

6. Landscape plotting in R

Now we have the counts we needs we can proceed to build a landscape plot using R.
Some hints:

* Plotting will require the R library 'akima' - further info here: https://cran.r-
project.org/web/packages/akima/index.html

https://www.google.com/url?q=https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/grid_counts_7460.txt&sa=D&ust=1536045835450000&usg=AFQjCNGnwRZaMujaed5bMzBXswZTKK1P8Q
https://www.google.com/url?q=https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/bonus-prepare_grid_counts.py&sa=D&ust=1536045835451000&usg=AFQjCNEQCT_TmNnJodXk1-iUmvW-64QyNQ
https://www.google.com/url?q=https://edu.sib.swiss/pluginfile.php/6286/mod_folder/content/0/bonus-prepare_grid_counts.pl&sa=D&ust=1536045835451000&usg=AFQjCNF1h5FtJr9nhGxZc4-E-CPNtyxd-w
https://www.google.com/url?q=https://cran.r-project.org/web/packages/akima/index.html&sa=D&ust=1536045835452000&usg=AFQjCNECpE2vPUXExgqj_11J8Q1VwWx9ug

* The main plotting call is made with 'persp' - further info here: https://stat.ethz.ch/R-manual/R-
devel/library/graphics/html/persp.html

* 'persp’ input requires x & y lists which are locations of grid lines at which the values in the z
dimension are measured, we will need 20 x 20 points (because that is what we calculated counts for),
so from 0.05 to 1 by steps of 0.05, then x is each value repeated 20 times, and y is 20 times the
series of values:

n<-seq(0.05,1,by=0.05)

x<-rep(n,each=20)

y<-rep(n,20)

* Read in the counts from the grid_counts file, these will make up out 'z' dimension values (once they
have been interpolated)

cnt<-read.table(file="grid_counts_7460.txt",header=TRUE,row.names=1)

z<-cnt$CNT

* Use akima's 'interp' function to interpolate x-y-z values from raw input values
a<-interp(y,x,z)

* Make a colour ramp that scales with your group counts:

nrz <- nrow(a$z)

ncz <- ncol(a$z)

mycolors <- colorRampPalette(c("aquamarine”, "darkblue”, "yellow", "darkred"))
nbcol <- nrz*ncz

Add white as the first colour (to clearly see zeros)

color <- c("white",mycolors(nbcol-1))

Compute the z-value at the facet centres

zafacet <- a$z[-1, -1] + a$z[-1, -ncz] + a$z[-nrz, -1] + a$z[-nrz, -ncz]
Recode facet z-values into colour indices

facetcola <- cut(zafacet, nbcol)

* Now plot your landscape:

pdf("my_landscape.pdf")

persp(a, shade=0.3, theta=-70, phi=10, col=color[facetcolal, ticktype="detailed", nticks=10,
xlim=c(0.05,1), ylim=c(0.05,1), cex.axis=0.6, xlab="Single-copyness", ylab="Universality",
zlab="Group counts")

dev.off()

* Note that with 'persp’, theta & phi are parameters used to control the angles defining the viewing
direction: theta gives the azimuthal direction and phi the colatitude

* shade controls the shading of the surface, see https://stat.ethz.ch/R-manual/R-
devel/library/graphics/html/persp.html for various other options to control your plot

* NB: as there are many small counts and few large counts, you might want to scale your z-values so
that your plot appears more mountainous, e.g. by taking the square root of the group counts instead
of the raw counts:

z2 <-z"0.5

a<-interp(y,x,z2)

* Play around with scaling, colours, and viewing options to tailor your landscape plot as you wish!

Non-scaled Apis mellifera orthology landscape

https://www.google.com/url?q=https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/persp.html&sa=D&ust=1536045835452000&usg=AFQjCNEtUTM3wc8VsCtozWJ12cBCN2y5fw
https://www.google.com/url?q=https://stat.ethz.ch/R-manual/R-devel/library/graphics/html/persp.html&sa=D&ust=1536045835452000&usg=AFQjCNEtUTM3wc8VsCtozWJ12cBCN2y5fw

3500

3000

2500

®
=
O 2000
c
o
9]
@)
c 1500
=
—
»
1000
10
0.9
500 08 4
07 @
N
Q
o
G
4]
Q2
03 3
L
02¢h
Unij '
i , 0.3 01
VefSa/;;y 0.2

0.1
7. Were you able to plot an orthology landscape? *

Yes, and tailor it!

No, | have failed my mission and am very confused!

Congratulations!

Changes made to get the plot below:

SCALE
z2<-z/(z/(z"0.5))
z2[z2=="NaN"]<-0

a<-interp(y,x,z2)

nrz <- nrow(a$z)

ncz <- ncol(a$z)

mycolors1 <- colorRampPalette(c("cyan", "blue", "darkblue","yellow", "red"))

mycolors2 <- colorRampPalette(c("green", "darkgreen"))

mycolors3 <- colorRampPalette(c("purple”, "pink"))

nbcol <- nrz*ncz

color <- c("white",mycolors1(nbcol-((nbcol/4)*3)),mycolors2(nbcol/4),mycolors3((nbcol/4)+500))
zafacet <- a$z[-1, -1] + a$z[-1, -ncz] + a$z[-nrz, -1] + a$z[-nrz, -ncz]

facetcola <- cut(zafacet, nbcol)

pdf("my_landscape2.pdf")
persp(a, shade=0.5, theta=-50, phi=20, col=color[facetcolal, ticktype="detailed", nticks=10,
xlim=c(0.05,1), ylim=c(0.05,1), cex.axis=0.6, xlab="Single-copyness", ylab="Universality",

zlab="Scaled group counts")
dev.off()

Scaled Apis mellifera orthology landscape

Skip to "Submit to conclude this mission."

We're here to help!
Come and find us during the breaks etc. and we'll see what we can do to help.

Skip to "Submit to conclude this mission."

Submit to conclude this mission

Powered by
B Google Forms

https://www.google.com/forms/about/?utm_source=product&utm_medium=forms_logo&utm_campaign=forms

