Advanced Mass-Spectrometry based Proteomics: quantification and posttranslational modifications

February 9th, 2018

Manfredo Quadroni Patrice Waridel Roman Mylonas

WORKSHOP II SCHEDULE 2018

- 9.00 Course start
- 9.05 Recapitulation of basic concepts in proteomics
- 9:15 Statistical validation of protein identification: advanced concepts
- 9:30 Post-translational modifications: general concepts and analytical specificities
- 9:45 Phosphorylation analysis
- 10:15 PTM exercise
- 10:30 Coffee break
- 11:00 Discussion of exercise results
- 11:15 Other biological modifications, unexpected PTMs, artefacts
- 12:00 Lunch break
- 13:00 Introduction to quantitative proteomics, label-free and labeled quantitation
- 14:00 Perseus exercise for quantification
- 15:00 Exercise discussion
- 15:30 Coffee break
- 15:50 Statistics and validation in quantitation, publication guidelines
- 16:00 Targeted quantification, DIA, conclusions
- 16.25 Short break
- 16:30 Test
- 17:00 End

Red : exercises

Today's goals

1) Give some knowledge on the mass spectrometry (MS) techniques used in proteomics to identify post-translational modifications in complex mixtures and quantify proteins

2) Practical analysis of datasets and evaluation of results

STEPS

1) Strategies for identification of PTMs with MS data : concepts and examples

- Mascot

2) Protein quantification with labeled and labelfree techniques: concept and examples

- Perseus

Teachers:

Manfredo Quadroni (<u>UNIL, PAFL</u>) Patrice Waridel (<u>UNIL, PAFL</u>) Roman Mylonas (<u>UNIL, SIB/PAFL</u>)

Main pipeline (bottom-up proteomics)

Mascot scoring

Mascot Score Histogram

Peptide score distribution.

lons score is $-10\log(P)$, where *P* is the probability that the observed match is a random event. On average, individual ions scores > 26 (beyond green shading) indicate identity or extensive homology (p<0.05).

- At threshold score there is a 5% probability of random peptide spectrum match (PSM)
- When identifying several thousands PSMs, a significant number of them are random matches: multiple testing problem
- How many wrong identifications, False Discovery Rate (FDR) ?

Spectra score distribution

• Score distribution can be modeled for spectra validation (ex: Peptide Prophet)

False Discovery Rate (FDR) - Peptides

FDR is defined as the expected proportion of incorrect identification among all identifications judged correct

Target-Decoy and probability-based filtering

Analysis and validation of proteomic data generated by tandem mass spectrometry.

8

False Discovery Rate - summary

- FDR is calculated at the peptide and at the protein (ex: Protein Prophet) level
- Various approach exist for FDR calculation, most of them relying on target-decoy approach
- Reporting of the FDR threshold applied is mandatory in proteomics publication: usually 1% is selected at peptide and protein level
- For very large datasets, FDR calculation is challenging and specific algorithms must be applied

Caveat

Protein identification

IS NOT

protein characterisation

Two peptides are enough to identify a protein but we are still identifying two peptides, not the entire protein

Highly similar sequences cannot be distinguished

For finding PTMs extensive sequence coverage is essential !!!

Post-translational modifications

Modification proteomics: the analysis of post-translational modifications (PTMs).

Typical question : how is protein activity modulated by covalent chemical modification ?

Some common PTMs

Modification	∆ Mass	Residue	Origin
Proteolysis	Various	Any	PTM, artefact
Dehydration	- 18.0106	N, Q, S, T, Y	PTM, artefact
Glycosylation (N-, O-, simple/complex)	Various	N, S, T, (Q)	РТМ
Phosphorylation	+ 79.9663	S, T, Y	РТМ
Sulfonation	+ 79.9568	S,T,Y,C	РТМ
Acetylation	+ 42.0106	N-term or K	PTM, derivative
Carbamidomethylation	+ 57.0215	С	Derivative
Methylation	+ 14.0156	K, R, D, E,	PTM, artefact
Ubiquitination (mono-, di-, poly, K48, K63,)	Various / + 114.043	K	РТМ
Sumoylation (SUMO-1, -2, -3)	Various	K	РТМ
Oxidation	+ 15.9949	C, M, W	PTM, artefact
ADP-ribosylation	+ 541.0611	R,C,N,S,E	РТМ
Myristoylation	+ 210.1984	N-term G, K, C	РТМ
Palmitoylation	+ 238.2297	C, K, S, T, N-term	РТМ
Prenylation (farnesyl-, geranylgeranyl-)	Various	CaaX (C-term)	РТМ
Nitrosylation	+ 28.9902	С	РТМ
Almost 100 known			

Mass shifts induced by Post Translational Modifications (PTMs)

MS analysis and modified matching parameters can identify modified peptides and sites of modification

Common issues in PTM analysis

- Protein sequence coverage

 → can be increased by multi-enzyme digestion, linked to abundance issue
- Labile PTMs / MS suitability

 → enzyme inhibitors, PTM derivatisation, use of alternative MS fragmentation (for ex. ETD)
- Artefacts

 → appropriate sample preparation, control experiments
- Isobaric PTMs

 → high resolution MS, specific fragments (for ex. immonium ions)
- Unknown (untargeted) PTMs
 → error-tolerant search, blind search
- Localization

 → use of alternative MS fragmentation, localization algorithms
- Connectivity
 - \rightarrow middle-down / top-down analysis

Phosphoproteomics

From : Wikimedia commons

Questions in phosphorylation analysis

- Is a protein of interest phosphorylated ?
- Which proteins are phosphorylated in a cell (or in a precise pathway ?)
- Localizing phosphorylation sites : exact residues
- Quantitation of changes in response to a stimulus
- Effect on physiological protein activity

Problems with phosphopeptide analysis

- 1) Quantity problem : abundance of the protein to analyze is often low and phosphorylation is substoichiometric, especially when purifying from in vivo
 - \rightarrow Scale up preparation, P-peptide enrichment
- 2) Bad fragmentation due to neutral loss : highly variable depending on peptide sequence
 - → Choice of MS instrument and MS/MS fragmentation (HCD, CID, ETD)
- 3) Enzyme used for digestion: is trypsin always the correct choice ? Phosphorylated regions are sometimes (often ?) in problematic regions of proteins : very acidic, K/R-poor or K/R-rich sequences

 \rightarrow Digestion with multiple proteases

Typical workflows for phosphopeptide enrichment

Enrichment of P-peptides by affinity chromatography

Classical IMAC : Chelated Fe3+ (ex. IDA : iminodiacetic acid)

•Bind : pH 3-4 Aqueous conditions

•Wash : pH 3-4 Aqueous conditions

•Release : pH >9

Metal oxides : Titanium dioxide Aluminium hydroxide Zirconium oxides

Bind : pH 1.5-4 Almost any solvent
Wash : pH 1.5-4 Almost any solvent

•Release : pH >9

Exact binding mode?

Snapshot : P-peptides enrichment by IMAC

859.1	Z::SRRN	11_HUMAN	Score 450	Mass 102331	Matches 19 (19)	Seq	uences 7 (7)	emP/	AI 50 Serine	e/arginin	ne repet	itive mai	trix	protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2
▼10 nen	tide matches	(13 non-dunli	cate 6 dunli	icate)										
☑ Auto	fit to window	(15 non dapn 1		cutcy										Before
	ry Dunes	Observed	Mr (ernt)	Mr (ga	1a) n	om MS	core	Expect	Pank	пр	entide			
yue Zie	AA N	443 1998	PPI (expt)	PIP (Ca	1C) <u>p</u> 951 _0		27		Kalik	<u>п</u> –	MDAG	הים מיזוי		catul (Drotain N-term)
200 	11 k T	443.1990	004.3030	004.3	0.001 -0.	02.0	24	0.00009		Π.	MDACI	PRD C	- AL	$\frac{1}{2} = \frac{1}{2} $
2 9 6 2 9 6	2.5 83	440.2044	903 4254	903.4	251 D	28.0	22	0.0020		л <u>г</u>	FARCI	EK K	+ La	abel:130(6)15N(2) (K)
da00		654 8304	1307 6462	1307 6	407 0	68 1	52	1 7e-05		пр	RVEL	RSERD		$G \neq 2$ [abe]: 130(6) 150(2) (K)
d 150	1	480 6260	1438 8562	1438 8	548 D	99.1	28	0 0024		11 12	VNIEV	TRPWT	TR	R
d654	15	720.4358	1438.8570	1438.8	548 1	.57 1	40 1	0.00041		אח	VNLEV	TRPWT	TK.	R
d673	69 1	728,4492	1454.8839	1454.8	832 N	49 1	27	0.004	b 1	л и и и	VNLEV	TRPWT	TR	R + 2 Label: 13C(6) 15N(2) (R)
rd673	70 1	485.9690	1454.8852	1454.8	832 1	.36 1	24	0.0056		ת ת	. VNLEV	TRPWT	ТΚ.	R + 2 Label: 13C(6) 15N(2) (K)
r ¹ 697	06	737.8859	1473.7573	1473.7	563 0	. 66 0	89	1.7e-08		אח	MMOTH	LTGFL	NGR	X = 1 + 1 + 1 + 1 + 2 + 2 + 2 + 2 + 2 + 2 +
r1143	15	916.4872	1830.9599	1830.9	575 1	.35 1	78	7.9e-07	b 1	UK	VKEPS	VOEATS	STS	SDILK.V
r1162	15	616.6696	1846.9868	1846.9	859 D	.53 1	59	9.1e-06	b 1	אח	VKEP	VOFAT	STS	SDTLK, V + 2 Label: 13C(6) 15N(2) (K)
d1162	17 11	924 5016	1846 9886	1846 9	859 1	49 1	69	2 3e-06		11 12	VEEP	VOEAT	STS	SDILK V + 2 Label: $13C(6) 15N(2)$ (K)
2084	38	815,9460	3259.7548	3259.7	537 0	.34 1	45	0.00012	b 1	ΠR	EFMGE	IWPLU	LSA	$\Delta OENTAGTPSAFLELKK, E + 2 Label: 13C(6) 15N(2) (K)$
									, 1					
	▼6				2::5		HUMAN	1	3098	Serin	ne/argin	ine repe	titive	re matrix protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2
					Score	Mass	Matc	hes S	equenc	es e	mP∆T			
	6.1	⊿'2:: S	RRM1_HUMA	AN	3098 1	02331	145 (1	45)	30 (3	0)	7.56	Serine/	argi	inine repetitive matrix protein 1 OS=Homo sapiens GN=SRRM1 PE=1 SV=2
	▼ <u>1</u>	45 peptide mat	tches (78 no	on-duplic	<u>ate, 67 dup</u>	<u>licate)</u>								and oftar IN/AC
	~	Auto-fit to win	dow											
		Query Dupes	Obs	erved	Mr(expt)	Mr (ca	Lc)	ppm M	Score	Exp	ect 1	Rank	U	Peptide
		₫1057 ▶2	486	.2334	970.4523	970.4	525	-0.18 0	52	1.4e	-05	1	υ	R.TASPPPPPK.R + Phospho (ST)
		⊠ 1113 } 2	490	.2407	978.4668	978.4	567	0.084 0	57	4.9e	-06	-	υ	R.TASPPPPPK.R + Label:13C(6)15N(2) (K); Phospho (ST)
		₫ 1990 ▶ 1	366	.1812 1	095.5216	1095.5	226	-0.90 1	25	0.0	042	1	υ	R.RYSPPIQR.R + Phospho (ST)
		₫ 1993 } 2	548	.7690 1	095.5234	1095.5	226	0.73 1	32	0.0	068	1	υ	R.RYSPPIQR.R + Phospho (ST)
		₫2146	556	.7544 1	111.4942	1111.4	939	0.35 0	19	Ο.	016	1	υ	K.SPTPSPSPPR.N + Label:13C(6)15N(4) (R); Phospho (ST)
		₫2180 ▶1	372	.8532 1	115.5379	1115.5	392	-1.13 1	32	0.0	034	1	υ	R.RYSPPIQR.R + 2 Label:13C(6)15N(4) (R); Phospho (ST)
		₫2183	558	.7772 1	115.5399	1115.5	392	0.66 1	25	Ο.	045	-	υ	R.RYSPPIQR.R + 2 Label:13C(6)15N(4) (R); Phospho (ST)
		₫ 2306 ▶ 1	376	.5245 1	126.5518	1126.5	536	-1.61 1	33	0.0	009	1	υ	R.TASPPPPPKR.R + Phospho (ST)
		₫ 2308 ▶ 1	564	.2838 1	126.5530	1126.5	536	-0.57 1	29	0.0	018	1	υ	R.TASPPPPPKR.R + Phospho (ST)
		₫2506	382	.5322 1	144.5749	1144.5	761	-1.06 1	35	0.00	058	1	υ	R.TASPPPPPKR.R + Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R); Phospho (ST)
		₫ 2508	573	.2956 1	144.5766	1144.5	761	0.50 1	32	0.0	026	1	υ	R.TASPPPPPKR.R + Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R); Phospho (ST)
		₫2623	577	.7822 1	153.5499	1153.5	193	0.56 1	41	0.00	041	1	υ	R.VSVSPGRTSGK.V + Phospho (ST)
		₫2824	586	.7931 1	171.5716	1171.5	717 -	-0.087 1	31	0.0	013	1	υ	R.VSVSPGRTSGK.V + Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R); Phospho (ST
		₫3247	403	.1991 1	206.5754	1206.5	758	-0.34 1	20	Ο.	014	1	υ	K.KAASPSPQSVR.R + Phospho (ST)
		₫3248 ▶1	604	.2954 1	206.5763	1206.5	758	0.41 1	60	6.8e	-06	1	υ	K.KAASPSPQSVR.R + Phospho (ST)
		₫3432 ▶1	408	.5196 1	222.5369	1222.5	373	-0.35 2	26	Ο.	011	1	υ	R.RRTPSPPPR.R + 2 Phospho (ST)
		₫3467	409	.2067 1	224.5983	1224.5	983	0.081 1	24	0.0	052	1	υ	K.KAASPSPQSVR.R + Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R); Phospho (ST
		₫3468	613	.3071 1	224.5997	1224.5	983	1.19 1	52	1.5e	-05	1	υ	K.KAASPSPQSVR.R + Label:13C(6)15N(2) (K); Label:13C(6)15N(4) (R); Phospho (ST

Fragmentation (CID/HCD) reactions in positive mode

Multi-enzymatic strategy

- Protein sequence coverage can be improved by using different digestion enzymes:
 - ➢ Trypsin (K,R)
 - Chymotrypsin (F, L, W, Y)
 - Lys-C (K)
 - ➢ Gluc-C (D, E)
 - > Arg-C (R)
 - Combination of 2 enzymes

Ex: POM1_SCHPO (S. pombe, fission yeast)

1 MGYLOSOKAV SLGDENTDAL FKLHTSNRKS ANMFGIKSEL LNESEISAVG 51 SYSNDICPNR QSSSTAADT SPSTNASNTN ISFPEQEHKD ELFMNVEPKG 101 VGSSMDNHAI TIHHSTGNGL LRSSFDHDYR OKNSPRNSIH RLSNISIGNN 151 PIDFESSOON NPSSLNTSSH HRTSSISNSK SFGTSLSYYN RSSKPSDWNO 201 ONNGGHLSGV ISITODVSSV PLOSSVFSSG NHAYHASMAP KRSGSWRHTN 251 FHSTSHPRAA SIGNKSGIPP VPTIPPNIGH STDHOHPKAN ISGSLTKSSS 301 ESKNISTIOS PLATSNSFFK ELSPHSQITL SNVKNNHSHV GSQTKSHSFA 351 TPSVFDNNKP VSSDNHNNTT TSSQVHPDSR NPDPKAAPKA VSQKTNVDGH 401 RNHEAKHGNT VQNESKSQKS SNKEGRSSRG GFFSRLSFSR SSSRMKKGSK 451 AKHEDAPDVP AIPHAYIADS STRSSYRNGK KTPTRTKSRM QQFINWFKPS 501 KERSSNGNSD SASPPPVPRL SITRSQUSRE PEKPEEIPSV PPLPSNFKDK 551 GHVPOORSVS YTPKRSSDTS ESLOPSLSFA SSNVLSEPFD RKVADLAMKA 601 INSKRINKLL DDAKVMOSLL DRACIITPVR NTEVOLINTA PLTEYEODEI 651 NNYDNIYFTG LRNVDKRRSA DENTSSNFGF DDERGDYKVV LGDHIAYRYE 701 VVDFLGKGSF GQVLRCIDYE TGKLVALKII RNKKRFHMQA LVETKILQKI 751 REWDPLDEYC MVQYTDHFYF RDHLCVATEL LGKNLYELIK SNGFKGLPIV 801 VIKSITRQLI QCLTLLNEKH VIHCDLKPEN ILLCHPFKSQ VKVIDFGSSC 851 FEGECVYTYI OSRFYRSPEV ILGMGYGTPI DVWSLGCIIA EMYTGFPLFP 901 GENEOEOLAC IMEIFGPPDH SLIDKCSRKK VFFDSSGKPR PFVSSKGVSR 951 RPFSKSLHOV LOCKDVSFLS FISDCLKWDP DERMTPOOAA OHDFLTGKOD 1001 VRRPNTAPAR OKFARPPNIE TAPIPRPLPN LPMEYNDHTL PSPKEPSNQA 1051 SNLVRSSDKF PNLLTNLDYS IISDNGFLRK PVERSRP

Semi-specific search, 4 missed cleavages allowed:

- 1. SEQ: sequence covered with trypsin digestion
- 2. SEQ: additional sequence covered with chymotrypsin digestion
- 3. SEQ: additional sequence covered with Lys-C digestion
- 4. SEQ: additional sequence covered with Glu-C digestion
- => Total sequence coverage: 95.9 %
- S: phosphosite found with trypsin
- S: additional phosphosite found with chymotrypsin
- S: additional phosphosite found with Lys-C
- SS : ambiguous phosphosite localization
- => Total number of phosphosites : 41

Phosphorylation localization

Extracted Ion Chromatogram (XIC) of phosphorylated DLHQPSLSPASPHSQGFER (m/z 723.996)

- Various phosphoforms of the same P-peptide can be sometimes distinguished by their different retention times
- Localization algorithms (Ascore, ptmRS, LuciPHOr, Mascot Delta Score, ...) for automated site assignment with probability score
- In case of phosphoform co-elution, site discrimination (and quantification) is often impossible !

PTM exercise

Glycosylation -1

Various glycosylation linkages: GICNAC Man Hyp -Gal FucNAc GICNAC GICNAC Glc GalNAc Gal N-glycosyl, Arg__{Glc} GICNAC O-glycosy GalNAC Gal Ser/Thr Man Tyr Gal Fuc C-glycosyl Trp-Man Pse Hyl. Gal DIACTRICK GICNAC-1-P Glypiation ... C-term- EthN-6-P-Man lan-1-P P-glycosyl...ser UC-1-P YI-1-P

Consensus sequence for N-glycosylation:

No consensus sequence for O-glycosylation:

From: Spiro RG, Glycobiology 2002, 12:43R-56R

Complexity & heterogeneity of glycans:

From: www.ionsource.com

Glycosylation -2

Levels of glycoproteomic complexity

Standard approaches to determine site-specific glycosylation

From: Dodds, 2012, Mass Spectrometry Reviews

Ubiquitination

After trypsin cleavage : Peptide modification is +GlyGly, Δ M=+114.0429 Isobaric with +N, +2*lodoacetamide

Ub-like proteins

C-termini of some Human Ub-like proteins

Ubiquitin

...VL**R**L**RGG**

SUMO1

... TPKELGMEEEDVIEVYQEQTGG

SUMO2

...DTPAQLEMEDEDTIDVFQQQTGG

SUMO3

...DTPAQLEMEDEDTIDVFQQQTGG

NEDD8

...DYKILGGSVLHLVLALRGG

ISG15

...GLKPLSTVFMNLRLRGG

URM1

....LGELDYQLQDQDSVLFISTLHGG

Problems :

SUMO, URM1 : Trypsin => Large cross linked peptides Other proteases : poorer activity, specificity, MS of peptides Fragmentation patterns complex, special software needed

The extreme case : histone tails

Unknown PTMs – mining unassigned MS/MS spectra

• A large proportion of MS/MS spectra are not assigned in proteomics samples:

Ex. From: Chalkley R J et al. Mol Cell Proteomics 2005;4:1189-1193

- Percentage of non-ID spectra is highly variable, 25-60%, depending on: sample complexity, MS instrument resolution, depth of analysis, DB search parameters, ...
- All possible unknown PTMs cannot be searched in the classical way because of too large search space:
 → high % of false positive matches, computationally heavy

Mining Unknown PTMs

 Various strategies/software used for discovery of unknown PTMs: error-tolerant search (Mascot), dependent peptides (MaxQuant), MODa, SpecOMS, Open-pNovo, PTM Finder (PEAKS), ...

- Results of open search must be interpreted with caution: many artefacts (PTM identity or position) !
- Many PTMs can be explained by sample preparation artefacts (oxidation, carbamylation, propionamide, ...)

Ex: PEAKS PTM Finder

Additional PTMs found with open search

LUNCH

Quantitative proteomics

Expression proteomics : analysis of protein expression levels and their changes

Typical questions :

- * what distinguishes a lymphocyte from a neuron ?
- * which proteins are newly induced in a cell after a specific stimulus ?
- Protein levels : main end product of gene activation, functionally active molecules
- Transcriptomics (cDNA, Affymetrix oligo chips, RNAseq,...) vs. proteomics
 - Comprehensive
 - Higher throughput, fast(er)
 - More sensitive
 - Assumption : [mRNA] ~ [protein]

Schwanhäusser B. et al. Nature 473, 337-342 (2011)

Main pipeline (bottom-up proteomics)

The XIC is used for quantitating peptide signals

Spectral counting vs MS1 XIC

- Spectral counting may not reflect actual intensity differences, especially for low signals
- Even when it does indicate a difference it is often not linear/accurate (stochasticity of precursor picking)
- Better quantification with MS1 (XIC) signal

Comparison : $A \iff B$

? Which proteins change in amount and how much ?

Applications :

- Healthy vs. diseased tissues
- Healthy vs. diseased body fluids
- Drug treated / untreated cells
- Stimulated / unstimulated cells
- Mutants / wt cells

.....

Techniques for large scale quantitative proteomics

quantification at peptide level

Metabolic labelling

Chemical labelling

Label free

Labeling

- Analytical variability minimized
- Number of samples limited (2-8)

Label free

- Number of samples unlimited Simpler sample preparation
- Analytical variability <u>Computationally heavy (XIC)</u>

Relative quantification by stable isotope labelling

How to label ? Pros and cons

- Metabolically (during protein synthesis)
 - \rightarrow Incorporation of one or more labelled amino acid
 - (+) "native" proteins
 - (+) compatible w. purifications
 - (+) accurate
 - (-) need cultivatable organism
 - (-) limited multiplexing (max. 3)
- Chemically (post protein synthesis)

\rightarrow "specific" chemical modification of AA side chain

(+) any sample can be done

- (+) higher multiplex (iTRAQ max 8-plex)
- (-) side (or incomplete) reactions
- (-) separate purifications
- (-) less accurate

SILAC experiment workflow

SILAC peaks

Chemical labelling : Isobaric Tags (iTRAQ)- multiplex quantification

Figure 1. The concept of iTRAQ[™] Reagent chemistry (example of a 4-plex experiment) Each sample is labeled with one of the four iTRAQ Reagents and then pooled prior to MS analysis.

Multiplexed Protein Quantitation in *Saccharomyces cerevisiae* Using **Amine-reactive Isobaric Tagging Reagents** Ross P., Pappin D. et al. *Molecular & Cellular Proteomics 3.12 - 2004*

- ← in vitro chemical labeling
- ← Same peptide from 4 samples has same mass (isobaric)
- ← quantification by tags in MS/MS spectra at fixed M/Z

Information Content of iTRAQ MS2 spectra

iTRAQ/TMT formats and reagents

	Multiplexing	Target functional groups	Mass range (max)	Features
itraq	4-, 8-plex	NH2 (N-term, Lys)	113-121	General peptide labelling
тмт	2-, 6-, 10-, 11-plex	NH2 (N-term, Lys)	126-131	General peptide labelling ; 10, 11-plex need higher scan resolution to separate reporter ions
TMT	6-plex	-SH (Cys)		Selective for Cysteines
TMT	6-plex	C=0		Glycans, steroids, oxidized proteins

McAlister, G. C., Huttlin, E. L., Haas, W., Ting, L., Jedrychowski, M. P., Rogers, J. C., ... Gygi, S. P. (2012). Increasing the multiplexing capacity of TMTs using reporter ion isotopologues with isobaric masses. *Analytical Chemistry*, *84*(17), 7469–78. http://doi.org/10.1021/ac301572t

Ross, P. L., Huang, Y. N., Marchese, J. N., Williamson, B., Parker, K., Hattan, S., ... Pappin, D. J. (2004). Multiplexed protein quantitation in Saccharomyces cerevisiae using amine-reactive isobaric tagging reagents. *Molecular & Cellular Proteomics : MCP*, *3*(12), 1154–69. http://doi.org/10.1074/mcp.M400129-MCP200

Signal processing in MS quantification

Figures from: Mueller L.N., Brusniak M.Y., Mani D.R., Aebersold R. Journal of Proteome Research, 2008, 7(1), 51-61.

Example of label-free quantitation

Processing in label-free quantitation (XIC)

Main Steps:

Preprocessing

Feature (m/z, tr, z, intensity)extraction

Matching and alignment

Normalisation

Statistical Analysis

- 2. quantification: intensity integration
- 3. creation of 2D feature map
- 4. matching and alignment across LC-MS runs

LC-MS/MS data dependent acquisition (DDA)

51

Automated DDA cycle

Goal : selection and fragmentation of a maximum number of peptides per unit of time

Missing data problem in DDA

- Data Dependent Acquisition (DDA) is a highly flexible method that can deal with the most diverse samples
- However, precursor selection in DDA is partially stochastic (or better, non deterministic) since it is based on contingent factors
- Especially in complex samples, the set of chosen (low abundance) precursors varies, even between replicate injections of the same sample
- \rightarrow missing peptide ID's across samples (even when precursor is present)
- → Loss of significant numbers of peptides/proteins values

Solutions :

- 1) Match between runs (MaxQuant)
- 2) <u>Data-Independent</u> <u>A</u>cquisition

repl.1	repl.2	repl.3
23.1	21.3	22.5
18.7	17.2	14.3
8.9	9.9	NaN
26.2	25.3	23.4
20.1	25.2	19.4
7.3	6.4	8
NaN	21.2	17.2
14.2	NaN	15.3
18.1	18.2	19.6
11.2	NaN	13.2

Quantitation tools : choice is limited

- Proteome Discoverer (Thermo Fisher Scientific)
 - Good GUI
 - Workflows and working with user plugins, other search engines => versatility
 - Compatibility only w. Thermo data
 - Commercial => expensive, licenses limit processing usage
 - Windows only
- MaxQuant/Perseus :
 - Freeware (but not open source) academic product
 - Versatile : LFQ, SILAC, iTRAQ, ...
 - Complex experimental designs possible
 - Extensive data output tables
 - Scalable (100's, 1000's of files)
 - Coherent, long term development
 - Windows mainly but LINUX coming next
 - No manual (though web resources available)=> parameters ?
 - No release notes
- Many other commercial packages (none is of broad scope)
- OpenMS initiative...interesting but not well known
- Skyline (DDA, DIA, targeted quantification)
- Other *ad hoc* academic software tools : poor/difficult diffusion outside originating lab

Note : many other search engines exist but mostly not (or not well) coupled to quantitation

MaxQuant/Perseus environment

MaxQuant documentation		Search	E- Register 👩 Log	http://www.coxdocs.org
Trace: - maxquant		Perseus	documentation	Search Search Search Recent Changes Media Manager Sitemap
Home viewer User interface Getting started Tutorial Trouble shooting andromeda User interface Configurations Concerning all software Download and installation Google groups : https://groups.google.com	MaxQuant is a quantitative proteomics software packa analyzing large mass-spectrometric data sets. It is spe high-resolution MS data. Several labeling techniques a MaxQuant is freely available and can be downloaded f andromeda, which is integrated into MaxQuant as well identification and quantification results. For statistical framework.	Trace: - maxquant - perseus Perseus User interface User interface Activities Activities Dugins Tutioniais Concerning all software Download and installation Concle groups Dug reporting Contact Companion software MaxQuant	Perseus is software package for si meaningful information from proce and thus completes the proteomics consisting of a main core to which independent statistical tools, which statistical methods and illustrations and supervised learning methods, scatter plots, and many many more systems-wide analyses.	perseus:start holgun proteomics data analyses, which helps to extract biologically ssed raw files. It performs bioinformatic analyses of the output of MaxQuant, s analysis pipeline. The software is implemented in a practical format plugins are added. This allows easy integration of an unlimited number of n can thus be combined in an analysis. The software already includes various s, such as data transformation, normalization and imputation, unsupervised correlation profiling, enrichment tests, motif identification, volcano plots, e. Additionally, it is possible to combine data from all omics sources for
YouTube videos : https://www.youtube.com	n/c/MaxQuantChannel			

Workflows on Doku-Wiki pages http://www.coxdocs.org/doku.php?id=perseus:user:use_cases:start

MaxQuant refs

Cox, J. and Mann, M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol, 2008, 26, pp 1367-72.

Cox J., Hein M. Y., Luber C. A., Paron I., Nagaraj N., and Mann M., Accurate Proteome-wide Label-free Quantification by Delayed Normalization and Maximal Peptide Ratio Extraction, Termed MaxLFQ. Mol Cell Proteomics, 2014, 13, pp 2513–2526.

Cox, J., Matic, I., Hilger, M., Nagaraj, N., Selbach, M., Olsen, J. V, & Mann, M. (2009). A practical guide to the MaxQuant computational platform for SILAC-based quantitative proteomics. Nature Protocols, 4, 698–705. http://doi.org/10.1038/nprot.2009.36

Perseus refs

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., ... Cox, J. (2016). The Perseus computational platform for comprehensive analysis of (prote)omics data. Nature Methods, 13(9), 731–40. http://doi.org/10.1038/nmeth.3901

Tyanova, S., & Cox, J. (2018). Perseus: A Bioinformatics Platform for Integrative Analysis of Proteomics Data in Cancer Research. Methods in Molecular Biology (Clifton, N.J.), 1711, 133–148. http://doi.org/10.1007/978-1-4939-7493-1_7

MaxQuant output variables (protein level)

* : main output

MaxQuant label-free output variables (protein level)

Quantitation summary

	Application	Multiplexing	Accuracy (process)	Quantitative proteome coverage	Linear dynamic range ^a	Ease of use
Metabolic protein labeling	 Complex biochemical workflows Cell culture systems only 	2-3	+++	++	1–2 logs	+
Chemical protein labeling (MS)	Medium to complex biochemical workflows	2-3	+++	++	1–2 logs	+
Chemical peptide labeling (MS)	Medium complexity biochemical workflows	2-3	++	++	2 logs	+
Chemical peptide labeling (MS/MS)	Medium complexity biochemical workflows	2-8	++	++	2 logs	+
Enzymatic labeling (MS)	Medium complexity biochemical workflows	2	++	++	1–2 logs	++
Spiked peptides	 Medium complexity biochemical workflows Targeted analysis of few proteins 	multiple	++	+	2 logs	++
Label free (ion intensity)	Simple biochemical workflowsWhole proteome analysis	multiple	+	+++	2–3 logs	++
Label free (spectrum counting)	 Simple biochemical workflows Whole proteome analysis 	multiple	+	+++	2–3 logs	+++

^a In MRM mode, dynamic range may be extended to 4–5 logs

Data processing in quantitative proteomics

• Experimental design: think about statistical testing before experiments ! Better to discuss with a biostatistician to pick up the correct test (power, data independence, parametric/non-parametric, hypothesis to test, ...):

"To call in the statistician after the experiment is done may be no more than asking him to perform a postmortem examination: he may be able to say what the experiment died of." Ronald Fisher, Indian Statistical Congress, Sankhya, around 1938.

•From peptide to protein quantitation:

- → median (resistant to outliers), min. 3 values (peptides, "evidence" or spectra values ?!)
- Normalization of data according to some assumption:
- \rightarrow ex: most proteins don't change
- Dealing with ratios: log-transformation (usually log₂):
- \rightarrow data symmetric and "more" normal \rightarrow statistics
- Exploratory data analysis (descriptive statistics):
- \rightarrow numerical and <u>graphical</u> summaries

Quantitation exercise

Data processing: summary

Statistics & validation - summary

- Missing data problem
- \rightarrow Imputation (to use with caution !)
- Multiple testing problem: false positives

→ FPR (Bonferroni, stringent) or FDR (Benjamini & Hochberg, less conservative) correction

• Significant differences *≠* meaningful differences

 \rightarrow Statistical significance does not mean biological significance: minimum fold change threshold

• Statistical criteria stringency will depend on downstream data analysis

 \rightarrow Is the aim of analysis a confident list of varying proteins or an overview of the proteome dynamics ?

Publication guidelines (MCP): quantitative results

Experiments

- How the quantitation was performed (number of peaks, peak intensity peak area, XIC)
- Minimum thresholds required for data to be used for quantitation
- Justification of removal of outlier data points
- Explanation of statistics used to assess accuracy and significance of measurements
- Indication of how biological and analytical reproducibility was addressed by experimental design

=> Biological replicates are almost mandatory these days...!

Results

- Number of peptides used for protein quantitation measurement
- Protein quantitation measurement and accuracy (e.g. mean and standard deviation).
- \rightarrow see also guidelines for reporting protein identification and PTMs

Targeted quantification

- Shotgun MS/MS : « fishing » experiment; sometimes desired molecule(s) are not detected
- Need targeted techniques : measure what we want (*ex. Western Blot*)
- Need to increase robustness, obtain absolute (not relative) quantification
- Expected : more sensitivity through selectivity

Targeted quantification by Selected Reaction Monitoring (SRM)

- Follows proteomics discovery phase
- Targeted quantitation of proteins through « proteotypic » peptides
- Simplified MS / MS
- Any peptide (+PTM) can be measured
- Absolute quantitation (if done w. synthetic internal labeled standard)
- A few hundreds proteins measured in few hours

KPYN	I_HUMAN , P	yruvate kina	ase isozymes	s M1/M2 - Ho	omo sapiens
1	MSKPHSEAGT	AFIQTQQLHA	AMADTFLEHM	CRLDIDSPPI	TAR NTGIICT
51	IGPASRSVET	LKEMIKSGMN	VAR LNFSHGT	HEYHAETIK N	VR TATESFAS
101	DPILYRPVAV	ALDTK GPEIR	TGLIKGSGTA	EVELKKGATL	KITLDNAYME
151	KCDENILWLD	YKNICKVVEV	GSK iyvddgl	ISLQVKQKGA	DFLVTEVENG
201	GSLGSKKGVN	LPGAAVDLPA	VSEKDIQDLK	FGVEQDVDMV	FASFIRKASD
251	VHEVRKVLGE	KGKNIKIISK	IENHEGVRRF	DEILEASDGI	MVAR GDLGIE
301	IPAEK VFLAQ	KMMIGRCNRA	GKPVICATQM	LESMIKKPRP	TRAEGSDVAN
351	AVLDGADCIM	LSGETAK GDY	PLEAVR MQHL	IAR EAEAAIY	HLQLFEELRR
401	LAPITSDPTE	ATAVGAVEAS	FK CCSGAIIV	LTKSGRSAHQ	VARYRPRAPI
451	IAVTRNPQTA	RQAHLYRGIF	PVLCKDPVQE	AWAEDVDLRV	NFAMNVGKAR
501	GFFKKGDVVI	VLTGWRPGSG	FTNTMRVVPV	P	

- Identify « good peptides »
 - Good signal
 - Fragment well
 - Not modified
- Define « transition » : m (precursor) / m (fragment)
 - Assemble list of transitions :

٠

- 2-3 transitions / peptide
- Min 2 peptides / protein

Selected Reaction Monitoring on proteotypic peptides

Targeted quantification and DIA

DIA: Data Independent Acquisition

Meyer JG, Schilling B. Clinical applications of quantitative proteomics using targeted and untargeted data-independent acquisition techniques. Expert Rev Proteomics. 2017 May;14(5):419-429.

DIA principle (simplest method) 1

DIA principle (simplest method) 2

Data Dependent \Leftrightarrow Data Independent Acquisition

DDA

- Precursor isolation => specificity of MS/MS spectrum (?)
- Precursor isolation => max sensitivity (AGC)
 - Flexible algorithm, «universal» method
- Semi-stochastic precursor selection => non reproducible
 Missed precursors => missing data

DIA

- Fragment *everything* => no missing data
- Sample record «complete», can be reinterrogated later
 - More reproducible quantitation
- Large precursor windows => mixed MS/MS spectra
 Less sensitivity/specificity for weak precursors

Summary of key concepts

- The Proteome : complexity, plasticity, dynamic range
- Proteomics : more challenging than genomics but direct access to cell functions
- LC & MS : many workflows to ID and quantify proteomes to depths of 5000 - 7000 proteins

Take home message-1

Many new possibilities in large scale protein analysis

PTM's

- PTM are one of the most exciting and difficult « new » fields
- Huge variety and complexity of PTMs; no general workflow exists

Quantitative proteomics

- Quantitation is now feasible on a significant fraction of the proteome
- Several methods available; data quality and throughput are variable. Choice is often based on the experimental system and design
Take home message-2

- Some choices crucial for success:
 - Biological question : what are we looking for ?
 - Model system
 - Sample preparation (!)
 - Abundance of protein of interest
 - Complexity of mixture
 - Enrichment mechanism
 - Data analysis : not soooooooooo easy !
 - If we get results, can we interprete them ?
 - If we get results, are they going to be useful ?

Some good reviews

• Nesvizhskii AI, Vitek O, Aebersold R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. *Nat Methods, 4(10):*787-97.

Review of proteomic analyses focused on statistical validation of data

- Jensen, O. (2006). Interpreting the protein language using proteomics. *Nat Rev Mol Cell Biol*, 7: 39-403.
- Witze, E.S., Old, W.M., Resing, K.A., & Ahn, N.G. (2007). Mapping protein post-translational modifications with mass spectrometry. *Nature Methods*, *4*(10): 798-806.
- Kim MS, Zhong J, Pandey A. (2016). Common errors in mass spectrometry-based analysis of posttranslational modifications. Proteomics, 6(5):700-14.

Give an overview of proteomics techniques used for PTM characterization in cells

- Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. (2007). Quantitative mass spectrometry in proteomics: a critical review. *Anal Bioanal Chem, 389: 1017–1031.*
- Bantscheff, M., Lemeer, S., M., Savitski, MM. & Kuster, B. (2012). Quantitative mass spectrometry in proteomics: critical review update from 2007 to present. *Anal Bioanal Chem, 404: 939–965.*
- Eidhammer, I., Barsnes, H., Eide, GE., & Martens, L. (2013). Computational and Statistical Methods for Protein Quantification by Mass Spectrometry. *Wiley Ltd, 1st ed, Print ISBN: 9780470512975.*

Contact

• <u>www.unil.ch/paf</u>

Activity of the facility, service fees, R&D, useful links,

- Manfredo.Quadroni@unil.ch
- <u>Patrice.Waridel@unil.ch</u>