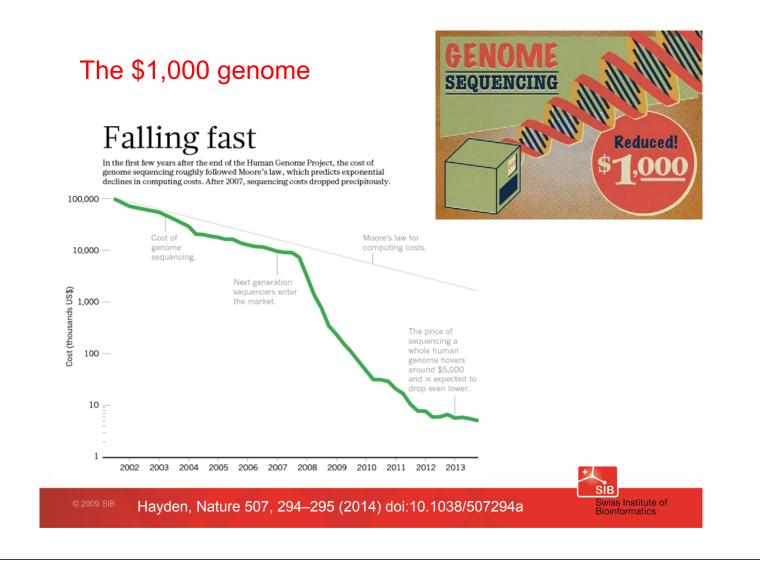
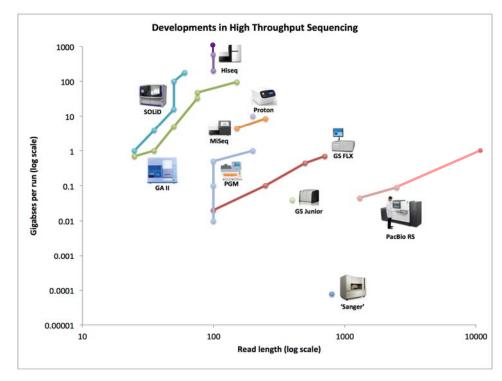
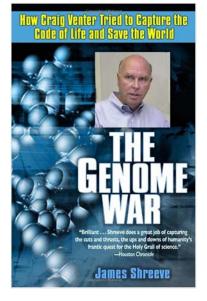
NGS sequencing technologies


Sylvain Pradervand March 21, 2015

Course outline


1. History of sequencing technologies

- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications
- 4. Oxford Nanopore sequencing
 - Technology description
 - Data from MiniION access program



Sequencing technologies

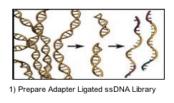
Sequencing landmarks (20th century)

- 1977
 - Maxam-Gilbert, Sanger sequencing
- 1986
 - ABI 370: Slab gel sequencer. ~5'000 bases/day (Hunkapiller and Hood)
- 1995
 - ABI 377: up to 96 lanes and 19'000 bases/day
- 1998
 - ABI 3700: 96 capillary sequencer. Over 400'000 bases/day

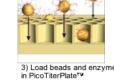
SIB

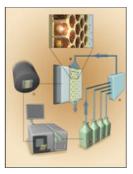
Swiss Institute of Bioinformatics

Current sequencing rate: > 60 Gbases /day (= 150'000 x 1998 rate)

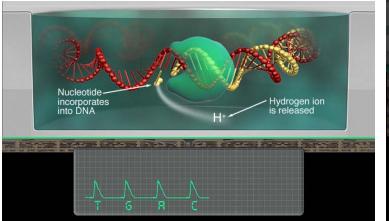


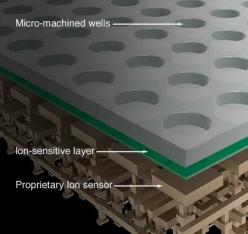
Sequencing landmarks (21th century)


- 2005
 - 454 Life Sciences, Pyrosequencing, 1M reads, 250bp, O/N
- 2006
 - Solexa 1G, 33M reads, 30bp, 3 days
- 2010
 - Ion Torrent, 1M, 100bp, 2 hours
- 2010
 - HiSeq, 600M reads, 100bp, 4 days
- 2011
 - PacBio, 25'000 reads, 2000bp, 90 min
- 2014
 - Oxford Nanopore MinION, 20'000 reads, 5000bp, 6 hours



The 454 Life Sciences* technology


 Perform Sequencing by synthesis on the 454 Instrument


- sequential flows of dA,dC,dG and dT
- base incorporation(s) produce light
- light intensity from each bead detected by CCD camera

454 sequencers will be phased-out mid 2016

^{© 2009 SIB} *Company purchased by Roche in March 2007

Ion Torrent* and benchtop sequencers

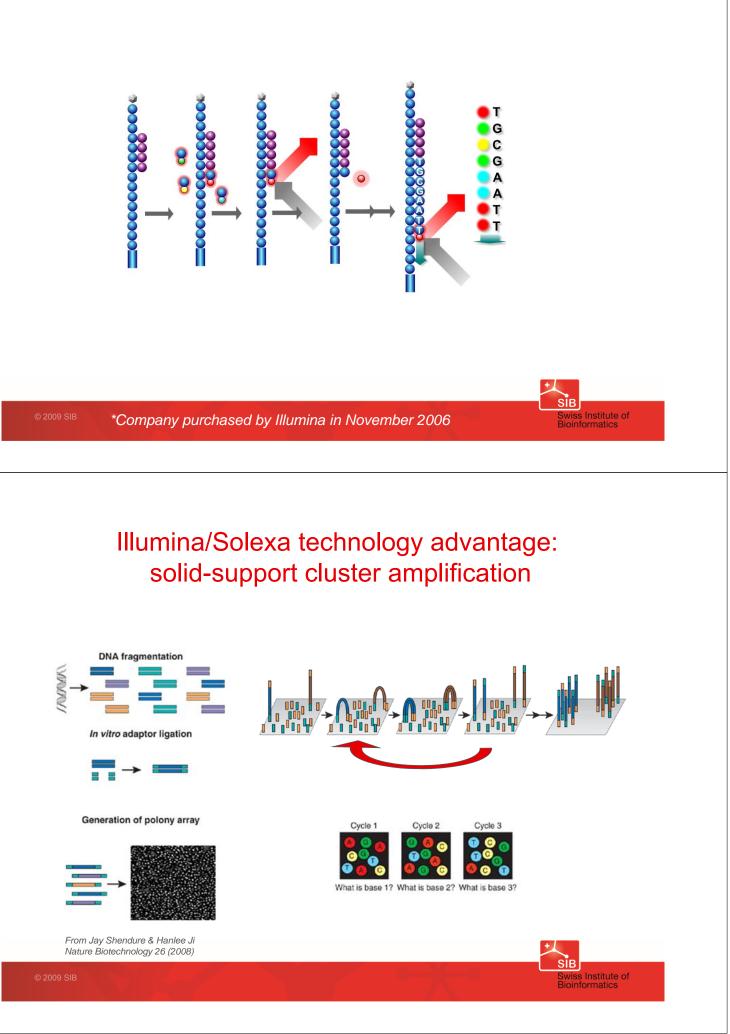
SIB

Ion Torrent sequencers

	Chip	Expe	cted sequencing ru	n time		Expected output*		
Ion PGM		35-base reads	200-base reads	400-base reads	35-base reads	200-base reads	400-base reads	
	Ion 314° Chip	0.5 hr	2.3 hr	3.7 hr	3 Mb	20 Mb	40 Mb	1 million wells
1000	Ion 316" Chip	0.7 hr	3.0 hr	4.9 hr	30 Mb	200 Mb	400 Mb	6 million wells
	len 318 ⁺ Chip	0.9 hr	4.4 hr	7.3 hr	300 Mb	500 Mb-1 Gb	1–2 Gb	11 million wells
Ion Proton	*Expected output with >	99% aligned/measu	red accuracy. Output	t is dependent on re	ad length and appli	cation.		

Throughput	Up to 10 Gb (Note: Ion PII" Chip* will be available about six months after the Ion PI" Chip. Ion PII" Chip* will
moughput	enable sample-to-variant analysis of a human genome in a single day, at up to 20x coverage.)
Read length	Up to 200-base fragment reads
Number of reads passing filter	60-80 million reads passing filter
Sequencing run time	2-4 hours

PI: 165 million wells, PII: 660 million wells


© 2009 SIB

Course outline

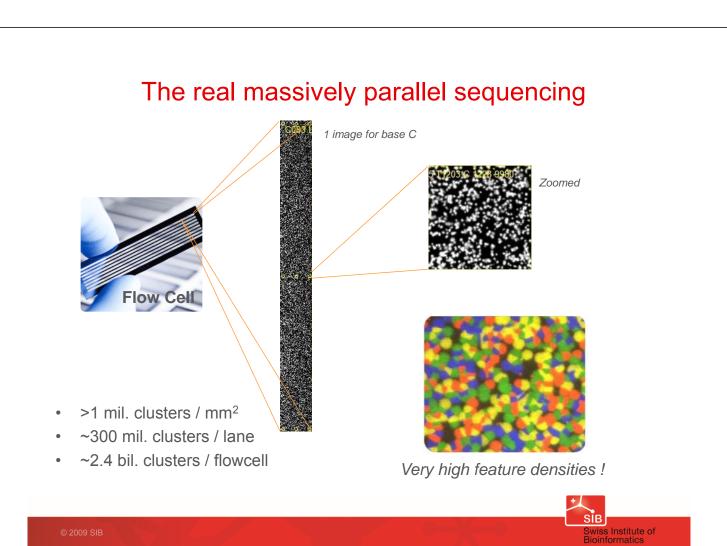
- 1. History of sequencing technologies
- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications
- 4. Oxford Nanopore sequencing
 - Technology description
 - Data from MiniION access program

The Solexa* technology

- Cluster amplification developed by • L.Farinelli et al. at Glaxo in Geneva !
- Technology developed by Manteia (spin-off of Serono)
- Manteia technology was sold to Solexa Ltd in 2003

USPTO PATENT FULL-TEXT AND IMAGE DATABASE

United States Patent	7,985,565
Mayer, et al.	July 26, 2011


Method of nucleic acid amplification

Abstract

A nucleic acid molecule can be annealed to an appropriate immobilized primer. The primer can then be extended and the molecule and the primer can be separated from one another. The extended primer can then be annealed to another immobilized primer and the other primer can be extended. Both extended primers can then be separated from one another and can be used to provided further extended primers. The process can be repeated to provide amplified, immobilized nucleic acid molecules. These can be used for many different purposes, including sequencing, screening, diagnosis, in situ nucleic acid synthesis, monitoring gene expression, nucleic acid fingerprinting, etc.

Inventors: Mayer; Pascal (Geneva, CH), Farinelli; Laurent (Vevey, CH), Kawashima; Eric H. (Geneva, CH) Assignee: Illumina, Inc. (San Diego, CA) Appl. No.: 10/449,010 Filed[.] June 2, 2003

SIB

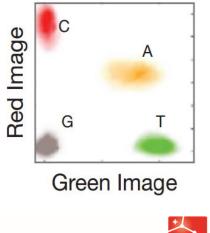
1 HiSeq run 2x125 bp = 6.5x the data published for the Human genome

•

- Human genome published in 2001: 65 fold mean coverage = 65 x 3.4 Gb = 221 Gb
- 1 HiSeq run (2 flow cells) in 2015: 1000 Gb in 6 days

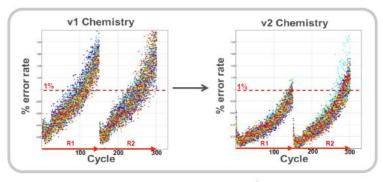
© 2009 SIB

2015 Illumina benchtop sequencers


Key Methods	Small genome, amplicon, and targeted gene panel sequencing.	Everyday genome, exome, trans	scriptome sequencing, and more
	MiSeq		eq 500
Run Mode	N/A	Mid-Output	High-Output
Flow Cells per Run	1	1	1
Output Range	0.3-15 Gb	20-39 Gb	30-120 Gb
Run Time	5-55 hours	15-26 hours	12-30 hours
Reads per Flow Cell [†]	25 million‡	130 million	400 million
laximum Read Length	2 x 300 bp	2 x 150 bp	2 x 150 bp

SIB

NextSeq: 2 Channels imaging


- HiSeq, MiSeq use four-channels sequence-by-synthesis (SBS) with a unique fluorescent dye for each of the 4 bases. Four images are necessary at each cycle.
- NextSeq use two-channels SBS with only two dyes used and 2 images necessary at each cycle.
 - Different basecalling
 System needs to be properly benchmarked

SIB

Swiss Institute of Bioinformatics

NextSeq 500 chemistry

	v1 Chemistry	v2 Chemistry	HiSeq v4 Chemistry
% >Q30	81.6	87.9	
Error rate (%), PhiX	0.70	0.37	Error rate=0.28
SNV sensitivity	95.8%	95.8%	EITOFTale=0.20
SNV precision	99.8%	99.8%	

NHL-16 prepared with TruSeq Nano 550 bp insert for WGS; also works on 350 bp inserts

- Contact an Illumina representative for access to these data sets
- Above analysis used Illumina Sequence Analysis Viewer and BWA Whole Genome Sequencing BaseSpace App 1.0
- Sensitivity/Precision metrics calculated relative to NIST Genome In a Bottle reference samples

2015 Illumina HiSeq sequencers

Key Methods	more.		Population- and production-scale human whole-genome sequencing			
	HiSed	2500	E HiSeq 3000	Hi Seq 4000	HiSeq X Five*	HiSeq X Ten*
Run Mode	Rapid Run	High- Output	N/A	N/A	N/A	N/A
Flow Cells per Run	1 or 2	1 or 2	1	1 or 2	1 or 2	1 or 2
Output Range	10-300 Gb	50-1000 Gb	125-750 Gb	125-1500 Gb	900-1800 Gb	900-1800 Gb
Run Time	7-60 hours	<1-6 days	<1-3.5 days	<1-3.5 days	<3 days	<3 days
Reads per Flow Cell†	300 million	2 billion	2.5 billion	2.5 billion	3 billion	3 billion
Maximum Read Length	2 x 250 bp	2 x 125 bp	2 x 150 bp	2 x 150 bp	2 x 150 bp	2 x 150 bp

^{SIB} http://www.illumina.com/systems/sequencing.html

Patterned Flow Cell

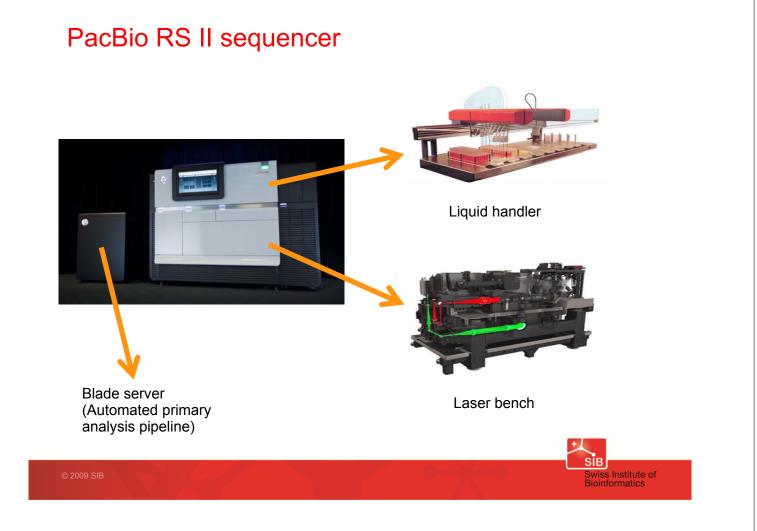
- Equipe HiSeq 3000,4000, X Five, X Ten
 - Nanowells at fixed locations
 - Even cluster spacing, uniform feature size
 Extremely high densities
 - Exclusion amplification clustering
 - > Only one single DNA template per well

Figure 2: Advanced Patterned Flow Cell Design Enables Ultra-High Throughput. Patterned flow cells contain billions of nanowells at fixed locations, providing even cluster spacing and uniform feature size to deliver extremely high cluster density.

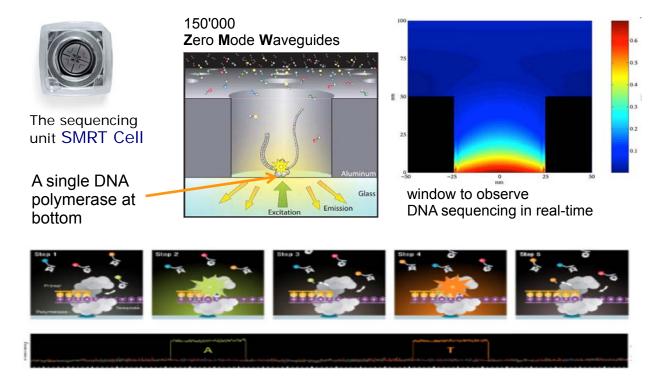
SIB

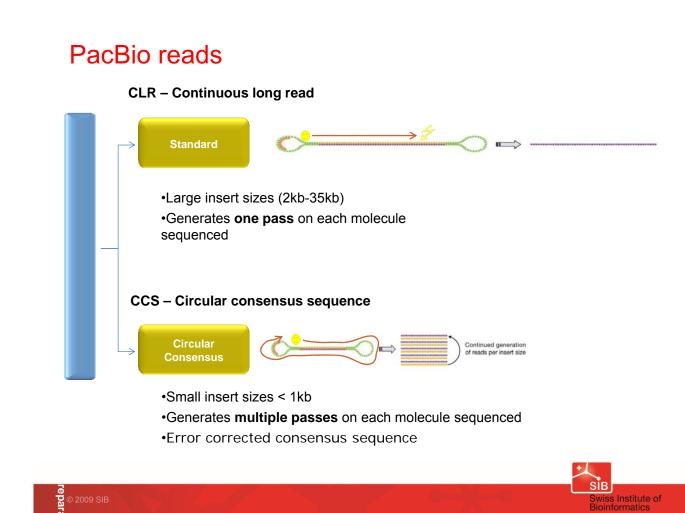
Course outline

- 1. History of sequencing technologies
- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications
- 4. Oxford Nanopore sequencing
 - Technology description
 - Data from MiniION access program



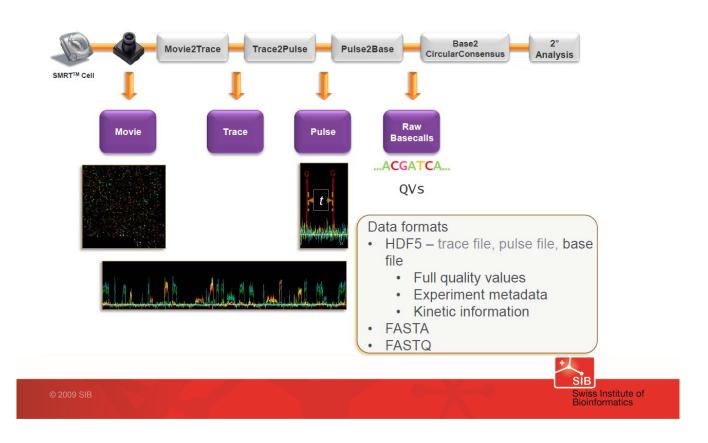
What is PacBio Sequencing?


- Single molecule sequencing
 - no local amplification of template DNA required
 - sequences reach >35kb maximum
- Real time monitoring of the sequencing reaction
 incorporation of fluorochrome labelled nucleotides by the polymerase is recorded on a movie over 240 min



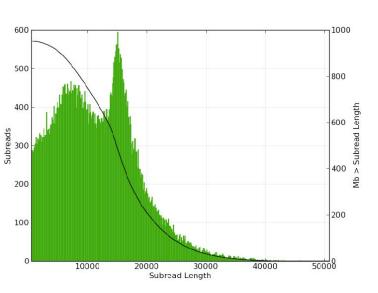
Single Molecule Real-Time

incorporation rate 3nt/sec (Illumina : 1nt/h)



Course outline

- 1. History of sequencing technologies
- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications
- 4. Oxford Nanopore sequencing
 - Technology description
 - Data from MiniION access program



Primary data processing

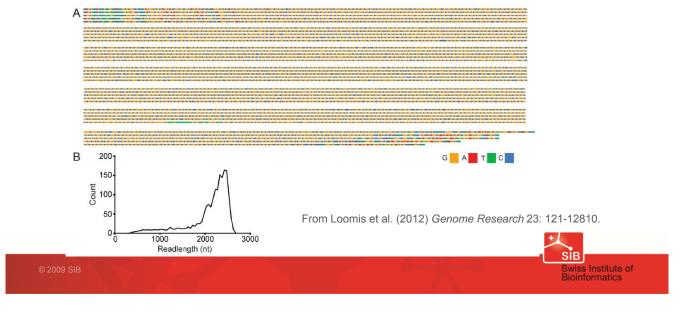
Sequencing data throughput

SMRT Cells: 1 Movies: 1	
Job Metric	Value
Polished Contigs	1
Adapter Dimers (0-10bp)	0.0%
Short Inserts (11-100bp)	0.0%
Number of Bases	958,423,236
Number of Reads	59,834
N50 Read Length	21,712
Mean Read Length	16,018
Mean Read Score	0.85
Mapped Reads	57,458
Mapped Read Length of Insert	10,740
Average Reference Length	3,652,649
Average Reference Bases Called	100.0%
Average Reference Consensus Concordance	100.0%
Average Reference Coverage	230.17

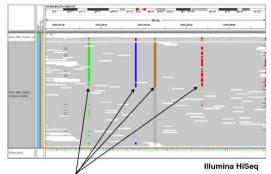
Mean mapped subread length: 11,152 bases

PacBio Sequencing Accuracy

- PacBio single-pass sequence reads in SMRT Sequencing are errorprone, with a median error of ~11%, predominantly deletions or insertions.
- However, PacBio sequencing achieves highly accurate sequencing results, exceeding 99.999% (Q50) accuracy, regardless of the DNA's sequence context or GC content. This is possible because:
 - 1. Consensus accuracy
 - 2. Sequence context bias
 - 3. Mapability of sequence reads


Consensus accuracy i. Generate sequence read: i. Map to reference: i. Consensus (10x coverage): ii. Consensus (10x coverage):		
i. Generate sequence read: ii. Map to reference: iii. Map to reference: iii. Control to the function of the function		
 i. Generate sequence read: Anticitate product of a conservation of a conseconservation of a co		
 i. Generate sequence read: ANTICITAN DECEMBERATION AND AND AND AND AND AND AND AND AND AN		
 i. Generate sequence read: Anticitate product of a conservation of a conseconservation of a co	Cons	sensus accuracy
		i. Generate sequence read:
		- par - so- Canada - Ali
		ii. Map to reference:
COMPACT TALE OF THE ADDALAGE - ADDIE OF TERM A COMPACT TALE OF THE ADDALAGE - ADDIE OF THE		
EPATTCHTANCTTC TRANSACCOMMANDEAL-CIT TOAC ON ACT LITTCOCCOCCT-TOGACA-COMMANTTOARA-T		
 Constructive constructions and a constructive approach to the constructive construc		< EB-ATTC-TARCUTC-TARCACOACAGCGA-CTFTGACOCCACTESTCCCCCCC-TGGACAA-COGCATTCAGA-TTCCCAAFTCGCAAFTCGCCCCCCCCCCCCCCCCCCCCCC
< Louintettaac etc its acalaceacag-gacetgacit act cost-cosecet-ttogacaategegabtcagacetegegabacetegegagacetegegagacategegagacategegagacaatege		<
		Conferences to and accarde-galor-galor-galor-cosore-trogacaategolaterancescarterances
Liganticitan generalageacegelageacectegadegiacegetteggecatecteggecatecateggecatecteggecategetgeggelageetteggegateataggecategelage Reference		
		 SALTETTAL TO SALACAGE ACCORTEGAT T ACCORTECTEOR TOGACATORS - TOGACTORS A ACCORDECT FOR ACTORS AND ACCORDED TO ACCORDENT OF A CONTRACTOR A CONTRACTOR

- Systematic error in a sequencing method will affect whether the consensus sequence can be determined correctly
- In SMRT Sequencing, errors are distributed *randomly*, which means that they wash out very rapidly upon building consensus



Sequence context bias

- Many sequencing systems have difficulties sequencing through extremely AT-rich or GC-rich regions, highly repetitive sequences, or long homonucleotide stretches.
- SMRT Sequencing does not exhibit such sequence context bias and performs very uniformly, even through regions previously considered difficult to sequence

Mappability of sequence reads

SYSTEMATIC ERROR

	NAMES IN COLUMN	New	311,0014	8.080%	SU MARTIN	k.
eto notaban Coa Ma		90.5 - C.				
adar, talahan						

RANDOM ERROR

- Short reads from repetitive regions may be incorrectly mapped, thereby causing false positive SNP calls.
- SMRT-sequencing reads avoid mismapping by providing long, multikilobase reads that can stretch through repetitive genomic regions.

Same region on both dataset

PacBio RS

Carneiro et al. (2012) BMC Genomics 13: 375-383

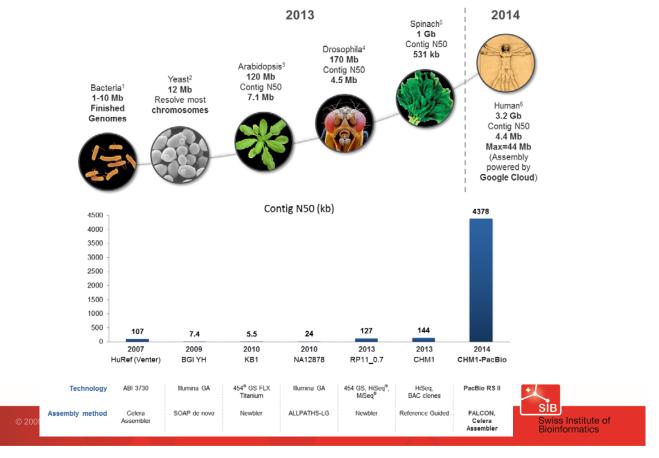
© 2009 SIE

Course outline

- 1. History of sequencing technologies
- 2. Illumina sequencing

3. PacBio sequencing

- Technology description
- Data characteristics and quality assessment
- PacBio applications
- 4. Oxford Nanopore sequencing
 - Technology description
 - Data from MiniION access program



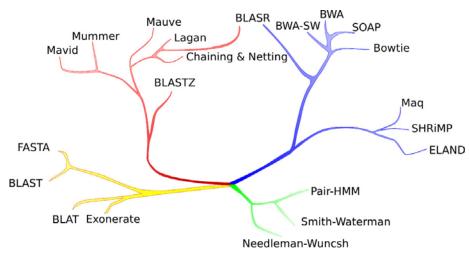
PacBio Sequencing Applications

- de novo genome sequencing
- Genome contigs scaffolding and gap closing
- Resequencing (amplicons)
- Epigenetic base modifications and methylation
- Transcriptome isoforms characterization (Iso-seq)

De novo genome assembly with PacBio

PacBio for human WGS

- Short-read sequencing struggles with many regions in the genome: repetitive, high GC, highly homopolymeric
- With PacBio, major histocompatibility complex region was entirely contained in one 9Mb contig
- Asian-specific reference genome (Asian Genome Project):
 - *de novo* sequencing using PacBio in combination with BAC clones worked best
- PacBio able to detect recombinations and break-point with *de novo* sequencing of breast cancer cell line
- J. Korlach: "by the end of the year, with improvements to read length and throughput, the cost will drop to \$10,000 to generate a reference medical grade *de novo* genome"

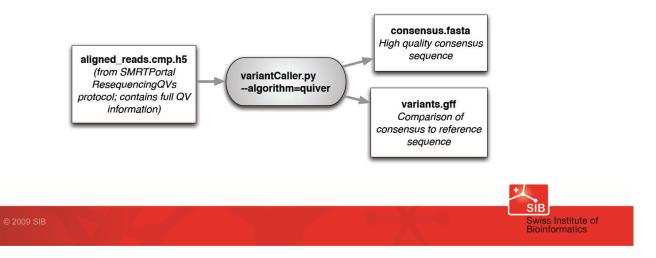


Amplicons sequencing with PacBio

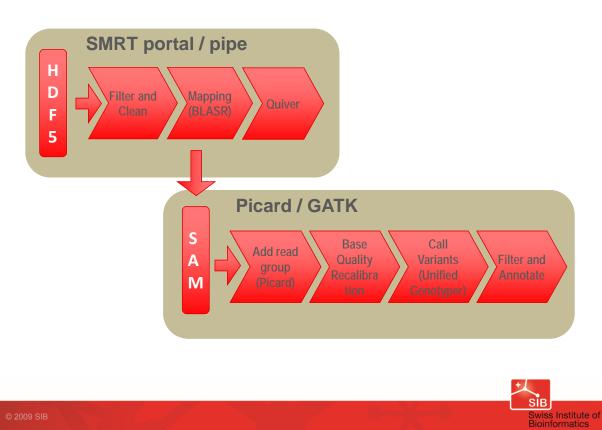
- Pros
 - No systematic errors: with sufficient coverage less false positive
 - Get even coverage: no GC bias, all regions sequenced equivalentely
 - Very long read: get structural variants and haplotypes
 - Orthogonal method to Illumina sequencing
- Cons
 - Need high sample quality (purity AND integrity)
 - High error rate with low coverage
 - Lower throughput than other Illumina orthogonal methods (e.g. lon Torrent)
 - Bioinformatics tools not as mature as for short reads
 - Problem of false positive indels

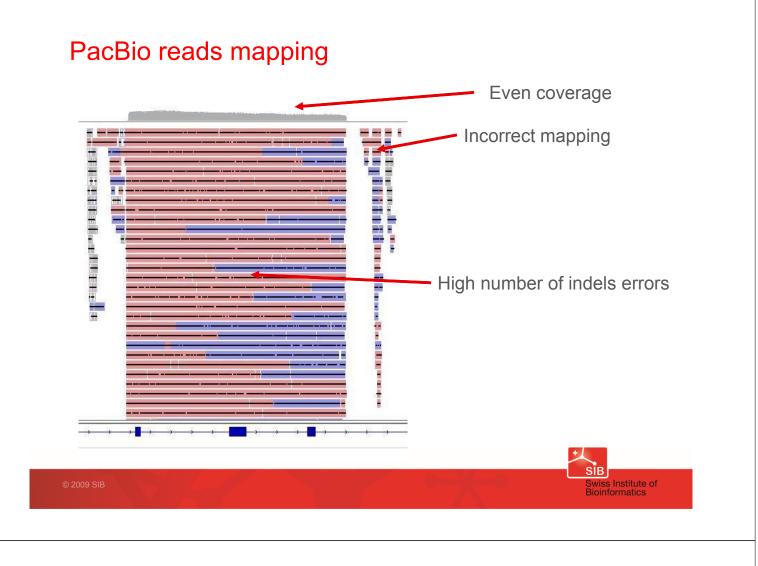
© 2009 SIB Swiss Institute of Bioinformatics	© 2009 SIB				SIB Swiss Institute of Bioinformatics
--	------------	--	--	--	---

BLASR: Basic Local Alignment with Successive Refinement


- Optimized for high indels rate
- Combines data structures from short read alignment with optimization methods from whole genome alignment

Chaisson and Tesler BMC Bioinformatics 2012, 13:238


+1


Quiver

- Multiple-read consensus calling algorithm for PacBio reads •
- Takes multiple reads of a given DNA template, outputs best guess of • template's identity
- Hidden Markov model to model sequencing errors •
- Quiver's consensus calls are completely independent of the • reference—only use the reads (Variant calls still require reference for comparison.)

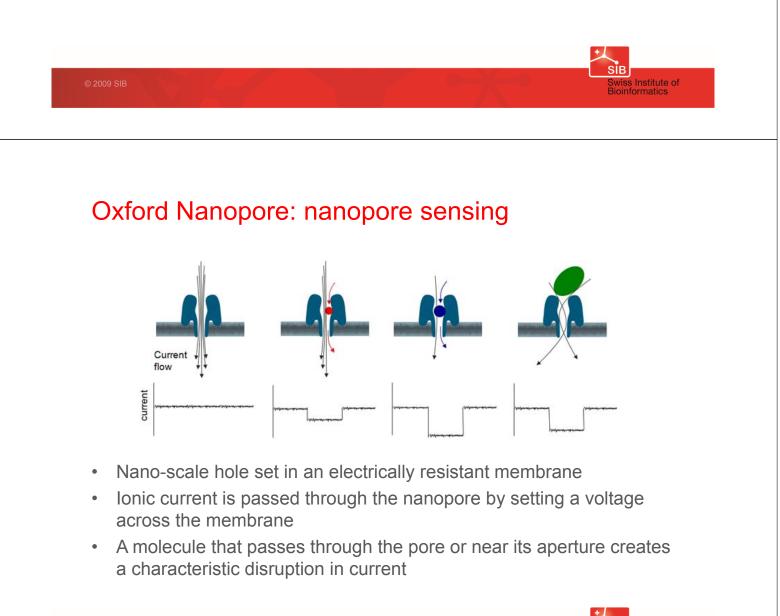
PacBio variants calling workflows

Quality score re-calibration

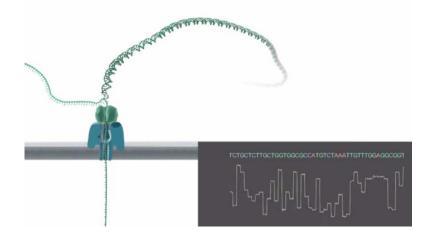
Example of an amplicons sequencing project

- 22 amplicons, total length:87 kb, total exonic length (17 kb)
- GATK VariantFiltration using recommended parameters
- SNVs:
 - 6 SNVs found in coding regions, all true positives
 - One variant spiked at a frequency of 11.5% among the variants identified
- Indels:
 - 17 indels found in coding regions, all likely false positives

Indels calling with PacBio data needs specific tuning



Course outline


- 1. History of sequencing technologies
- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications

4. Oxford Nanopore sequencing

- Technology description
- Data from MiniION access program

Oxford Nanopore: DNA sequencing

- Intact DNA polymers are sequenced in real time as the DNA passes through the pore
- Challenges
 - Many DNA bases occupy the pore at any time. Need to identify the sequence of individual bases within this strand
 - Need to controlled translocation of the strand through the nanopore

www.nanoporetech.com/technology

Oxford Nanopore systems

The GridION system

- · operates with a single-use cartridge
- multiple nodes can be aggregated together into co-operating units

The MiniION system

• portable, disposable device plugged directly into a laptop computer

The PromethION system

- benchtop, small number of samples on a very large number of nanopores or multiple samples in parallel
- modular flow cells number, no need to occupy the full capacity of the instrument

SIB

MinION reads

- Template
 - From the 1st of 2 strands presented to the pore
 - Slowed down by a proprietary processive motor enzyme which is ligated to the leader adapter
- Complement
 - Present if a hairpin has been successfully ligated
 - Slowed down by a second enzyme termed the HP motor
- 2D
 - Normal 2D with fewer events in the complement than in the template strand
 - Full 2D with more or equal complement events than template events (Highest quality)

	+
	Sill Swiss Institute of Bioinformatics
	Bioliniormatics

First Data presented at AGBT meeting on February 14, 2014

Bacteria	Genome Size	Obtained coverage	Mean read length
E. coli	4.7 Mb	6-fold	5.4 kb
Scardovia	1.6 Mb	13-fold	4.9 kb

- Sequenced speed of 25 bases per second
- Measuring signal of 6 bases
- Accuracy:
 - 84% of reads >= 5 kb had at least one perfect 50-mer
 - 100% of reads >= 5 kb had at least one perfect 25-mer
- Systematic errors?
 - Systematic deletions
 - 'Error-blocks' regions with error prone bases

Course outline

- 1. History of sequencing technologies
- 2. Illumina sequencing
- 3. PacBio sequencing
 - Technology description
 - Data characteristics and quality assessment
 - PacBio applications

4. Oxford Nanopore sequencing

- Technology description
- Data from MiniION access program

MinION access program (MAP)

Your journey through MAP MAP Phase What Happens Review 'your guide to MAP' Review Terms and Conditions Review Laptop/PC, equipment and consumables require If you wish to continue, log in to MAP website to provide deposit and initiate your first cycle of MAP Invitation issued Agree Terms and Conditions Pay deposit and delivery charges Provide biohazard information for returns Registration & Deposit · Receive shipping schedule MAP cycle: Configuration phase Receive Configuration Pack (MinION device, test flow cell, software) Install and check MinION and software (requires completion to continue in MAP) Await delivery of experimental pack Receive experimental pack (two flow cells, sufficient sequencing kits) Conduct Burn-in experiments Using existing flow cells, conduct experiments using own samples Receive additional pack of two flow cells Acknowledge with Oxford Nanopore that you are happy with results of Burn-in, including the results using your own samples Burn-in experiments Additional Continue using NanoporeOnline.com experiments with Start to return flow cells own samples End MAP cycle Return MAP cycle package to Oxford Nanopore Decision on future involvement NANOPORE

MAP one year after

Publications from MinION Access Programme Participants

A complete bacterial genome assembled de novo using only nanopore seguencing data. Nicholas J. Loman, Joshua Quick, Jared T. Simpson, *bioRxiv*, doi: 10.1101/015552 (2015)

Long read nanopore sequencing for detection of HLA and <u>CYP2D6 variants and haplotypes</u>, Ron Ammar, Tara A. Paton, Dax Torti, Adam Shlien, Gary D. Bader. *F1000Research*, doi: 10.12688/f1000research.6037.1 (2015)

Nanopore Sequencing: From Imagination to Reality, Hagan Bayley. Clinical Chemistry, doi: 10.1373/clinchem.2014.223016 (2014)

<u>A reference bacterial genome dataset generated on the</u> <u>MinION™ portable single-molecule nanopore seguencer.</u> Joshua Quick, Aaron R QuinIan & Nicholas J Loman. *GigaScience*, doi:10.1186/2047-217X-3-22 (2014)

Poretools: a toolkit for analyzing nanopore sequence data. Nicholas J. Loman & Aaron R. Quinlan. *Bioinformatics*, doi: 10.1093/bioinformatics/btu555 (2014) Improved data analysis for the MinION nanopore sequencer. Miten Jain, Ian T Fiddes, Karen H Miga, Hugh E Olsen, Benedict Paten, Mark Akeson, *Nature Methods*, doi:10.1038/nmeth.3290 (2015)

Oxford Nanopore Sequencing and de novo Assembly of a Eukaryotic Genome, Sara Goodwin, James Gurtowski, Scott Ethe-Sayers, Panchajanya Deshpande, Michael Schatz, W Richard McCombie, *bioRxiv*, doi: http://dx.doi.org/10.1101 /013490 (2015)

MinION nanopore sequencing identifies the position and structure of a bacterial antibiotic resistance island. Philip M Ashton, Satheesh Nair, Tim Dallman, Salvatore Rubino, Wolfgang Rabsch, Solomon Mwaigwisya, John Wain & Justin O'Grady. Nature Biotechnology, doi:10.1038/nbt.3103 (2014)

poRe: an R package for the visualization and analysis of nanopore sequencing data. Mick Watson, Marian Thomson, Judith Risse, Richard Talbot, Javier Santoyo-Lopez, Karim Gharbi & Mark Blaxter. Bioinformatics, doi: 10.1093/bioinformatics/btu590 (2014)

© 2009 SIB

https://nanoporetech.com/technology/publications

MOLECULAR ECOLOGY

RESOURCES

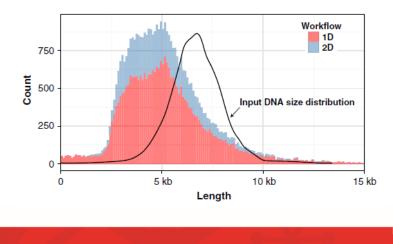
Molecular Ecology Resources (2014) 14, 1097-1102

doi: 10.1111/1755-0998.12324

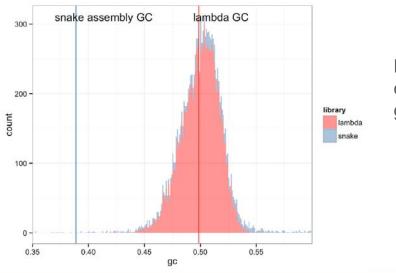
OPINION

A first look at the Oxford Nanopore MinION sequencer

ALEXANDER S. MIKHEYEV and MANDY M. Y. TIN


Ecology and Evolution Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami-gun, Okinawa 904-0495, Japan

- Samples: Lambda phage genome (48 kb) Protobothrops flavoviridis (snake) venom transcriptome
- Runs: One flowcell for Lambda phage with chemistry R6. 36h One flowcell for snake cDNA with chemistry R6. 24h


Lambda phage data

	Workflow			
	1D	2D		
Reads	29 458	11 094		
Total sequenced bases	155 370 698	55 854 289		
Reads mapped by BLASTN	7997 (27%)	2746 (25%)		
Reads mapped by BLASR	3472 (12%)	909 (8%)		

Snake cDNA data

Nb. Reads: 1429 1D reads (corresponding to 1Mb), 16 2D reads. Overall alignment rate: 1.4%

Base caller model may be over-trained on lambda genomic sequence.

SIB

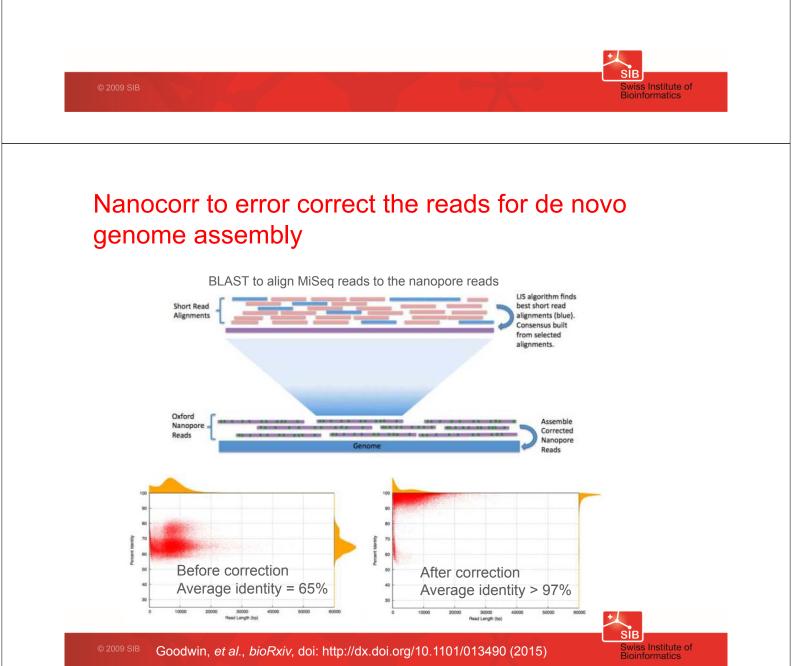
Lambda data alignment

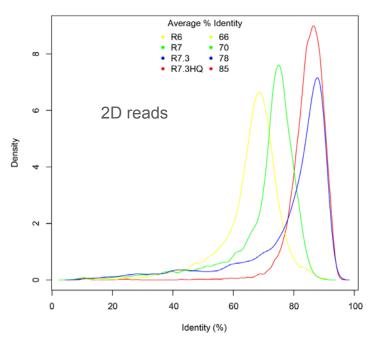
		1148		1152	0	115	7	1150		1163		1160			1175		1181	1183
ensus	s-	- <mark>G</mark>	– <mark>G C</mark> –	CA-	2 TCA	r <mark>G</mark> -	<mark>A</mark>	A - T	- <mark>G</mark> C -		- <mark>GGG</mark>	Q-A	- <mark>G</mark> C-	<mark>G</mark> -A	CTAC	A T	 - <mark>C</mark> -C-	
ice	<mark>G</mark>	- G	- G C -	CA-	TCA	T G	A		GC -	GAT	GGG	C-A	GC	G-A	CTAC	A T	 - C - C -	G
1	<mark>G</mark>	- G	– G C –	CA-	TCA	T – <mark>G N A</mark> G	<mark>C</mark> A		GC -		GGG	-AC-A	G -	G – –	TA N	<mark>G</mark> – – Т	AC-C-	G
1					TCA													
					T C A <mark>G</mark> C C													
					T - A													
I 1					TNN													
					TCA													
					TCA													
1					TCA													
1					T													
I 1					TCA													
					– C <mark>G</mark> – – –													
					TCA													
1			-GCT	CA-	TCA	T G	A	A - T	TC-	GAT	GGG	C	- N N -	G-A	NINA G	A	- C - C -	- G

- Insertions/Deletions introduce random spurious data.
- They were able to call the consensus sequence with 16x coverage data.
- <u>BUT</u>: Because of its extraordinarily high error rates, the current iteration of Oxford Nanopore technology is close to <u>useless for</u> <u>genotyping applications</u>.

© 2	2009 SIB					-0	Sib Swiss Institute Bioinformatics	of
	al. GigaScience 2014 vw.gigasciencejourr	, 3 :22 nal.com/content/3/1/22			(GIGA) ⁿ			
	A NOTE				SCIEN Open Ac			
DAT	ANOTE				OpenAc	cess		
A re ger	efereno	ce bacteria d on the M decule nan	inlON™	portable	et	. coli K-12		
A re ger sing	eferen nerateo gle-mo ^{Quick^{1,2}, Aaror}	d on the M Diecule nan R Quinlan ³ and Nichola Rach nanopore run in r	inION™ iopore s as J Loman ¹ * eads	portable sequence	et e E	. coli K-12	Full 2D	
A re ger sing	eferen nerateo gle-mo _{Quick^{1,2}, Aaror}	d on the M Decule nan	inION™ opore s as J Loman ^{1*}	portable	et		Full 2D 1598	

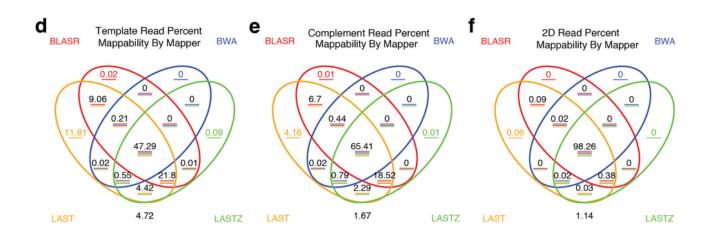
Read length: 5,458 bp (mean 2D)


- MinION is able to sequence entire bacterial genomes in a single run
- Subsequent analysis, not in the paper, showed that MiniION data decreased the number of Illumina-only contigs from 96 to 4
- 6 misassemblies: transposon repeat units different between the *E. coli* batches
- N. Loman: "Importantly, the data are quite usable"


© 2009 SIB

Tools for nanopore data

- Poretools: Data extraction and QC (Python) *Bioinformatics, doi:* 10.1093/bioinformatics/btu555 (2014)
- poRe : Data extraction and QC (R) Bioinformatics, doi: 10.1093/bioinformatics/btu590 (2014)
- BLAST, LAST (last.cbrc.jp), BWA-MEM ont2d: Aligners
- nanocorrect (github.com/jts/nanocorrect): Reads error correction pipeline bioRxiv, doi: 10.1101/015552 (2015)
- Nanocorr: Reads error correction using Illumina reads *bioRxiv*, doi: http://dx.doi.org/10.1101/013490 (2015)
- Celera Assembler Science 287, 2196–2204 (2000)
- marginAlign: mapping and variants calling Nature Methods, doi:10.1038/nmeth.3290 (2015)


MinION chemiseries improvement

Identity: proportion of bases in a read that align to a matching base in a reference sequence

^{2009 SIB} Jain, et al., Nature Methods, doi:10.1038/nmeth.3290 (2015)

Comparison of alignment programs

Proportion of reads that can be aligned to either the M13 or the phage λ DNA control using the tuned parameters for each mapper

SIB

D. Sanglard's lab application for MiniION early access program

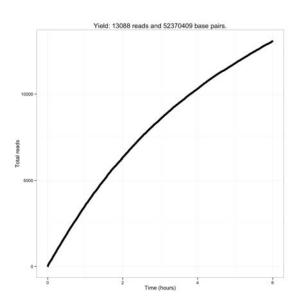
- Genome sequencing of two strains of Candida Glabrata from one patient:
 - One strain sensitive to the drug
 - One strain resistant to the drug and more virulent
- Project performed by Luis Vale Silva

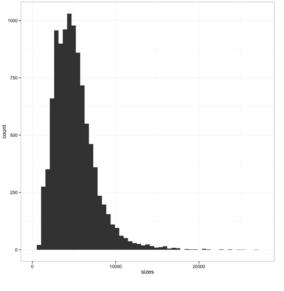
MinION runs

Date	MinION	Flow cell	Pore chemistry	Sample	Run time	Channels w/ reads	Basecalled fast5 files	Reads	Base pairs
24.06	MN02574	#1 MN-20-46467	R6	lambda	6h	52	14 (error w/ base calling!)	8	8'992
18.07	MN02603	#2 MN-20-46630	R6	lambda	6h	408	20'817	18'726	72'178'267
29.07	MN02603	#3 MN-20-46636	R6	lambda (same lib.; 11 days 4°C)	6h	138	2'593	2'588	12'652'844
30.07	MN02574	#4 MN-20-46617	R6	lambda (same lib.; 12 days 4°C)	6h	60	581	573	2'368'110
20.08	MN02603	#5 MN-20-68057	R7	DSY562	32h	234	3'222	2'398	9'017'131
03.09	MN02603	#6 MN-20-68111	R7	DSY562	4h30	59	134	86	270'286
03.09	MN02603	#7 MN-20-68183	R7	DSY562	48h	214	1'026	884	3'085'370
30.09	MN02574	#8 MN-20-68030	R7	DSY562	32h	184	755	868	2'889'720

Example of flowcell #2

- Total reads: 18'726
- Total base pairs: 72'178'267
- Mean: 3'854.44
- Median: 3'776
- Min: 5
- Max: 84'419


Lambda phage genome size = 48 kb


2	Squiggle plot for read: 2014.07.18-Basecalled/LAB02188_Burnin20140718_3332_1_ch2_file0_strand.fast5 Total time (sec): 84.5198
100 - 90 - 80 - 70 -	adaphaning of the finite construction productive or compared Palantines, the manufacture of the first
100 - 90 -	
80 - 70 - 100 -	ر الدهايين (11 من 11 م
Mean signal (picoamps) - 06 - 01 - 02 - 02 - 08 - 06 - 06 - 06 - 06 - 06 - 06 - 06 - 06	so
- 00 90 - 80 - 70 -	
100 - 90 - 80 - 70 -	
100 - 90 - 80 - 70 -	
19.3	75 Time (seconds)

read squiggle plot

© 2009 SIB

Example of flowcell#2

Yield plot

Read length histogram

Data processing

- Per-read fast5 files (hdf5 format) generated during run
- · Fast5 files uploaded for cloud-based base-calling
- Read extraction into FASTA format using *Poretools* (python scripts) or R package *poRe*
- Reference-based alignment with *LAST* that can find weak similarities, with many mismatches and gaps
- Get Consensus sequence with SAMtools

© 2009 SIB Swiss Institute of Bioinformatics

LAST alignment

2D reads

All reads

Globals Reference size Number of reads							
				Globals			
Number of reads	48,502			Reference size	48,502		
	1,943			Number of reads	13,279		
Mapped reads	1,943 / 100%			Mapped reads	13,279 / 100%		
Unmapped reads	0 / 0%			Unmapped reads	0 / 0%		
Paired reads	0 / 0%			Paired reads	0 / 0%		
Read min/max/mean length	58 / 14,328 / 2,989.21			Read min/max/mean length	58 / 31,714 / 3,307.47		
Clipped reads	1,943 / 100%			Clipped reads	13,261 / 99.86%		
Duplication rate	5.87%			Duplication rate	18.42%		
ACGT Content				ACGT Content			
Number/percentage of A's	1,300,386 / 26.03%			Number/percentage of A's	10,664,100 / 25.58%		
Number/percentage of C's	1,172,054 / 23.46%			Number/percentage of C's	10,024,565 / 24.04%		
Number/percentage of T's	1,248,793 / 25%			Number/percentage of T's	10,278,461 / 24.65%		
Number/percentage of G's	1,274,497 / 25.51%			Number/percentage of G's	10,729,605 / 25.73%		
Number/percentage of N's	0 / 0%			Number/percentage of N's	0 / 0%		
GC Percentage	48.97%			GC Percentage	49.77%		
Coverage				Coverage			
Mean	124.32			Mean	1,041.5		
Standard Deviation	Ŷ			Standard Deviation	Ŷ		
Mapping Quality				Mapping Quality			
Mean Mapping Quality	210.89			Mean Mapping Quality	210.43		
Mismatches and indels				Mismatches and indels			
General error rate	34.03%			General error rate	37.86%		
Insertions	217,282			Insertions	1,165,017		
Deletions	341,530			Deletions	4,596,579		
Homopolymer indels	23.5%			Homopolymer indels	26.04%		
Chromosome stats				Chromosome stats			
Name	Length Mapped bases	Mean coverage	Standard deviation	Name	Length Mapped bases	Mean coverage	Standard deviation
Complete_genome_Lambda_phage: _ONT_provided_burn-in_sequence	48502 6029931	124.32	Ŷ	Complete_genome_Lambda_phage: _ONT_provided_burn-in_sequence	48502 50515027	1,041.5	Ŷ

Oxford Nanopore Conclusions

- Multiple updates over the course of the MAP: 3 different flow cells versions and a number of sample preparation protocols
- Variability in performance between individual flow cells was considerable. Too many flow cells of bad quality.
- Data quality is poor, need 1000x coverage to get the lambda phage correct (with one ambiguity)
- Very long reads not always useful because they often do not align well: quality of the reads or inadequate alignment method?
- Systematic errors:
 - pentamers with low GC-content underrepresented
 - substitutions errors not uniform
 - predominance of single base indels
- Huge capacity for parallelization: PromethION with estimated throughput of 300 to 400 gigabases per day!

Thank You		